A large amount of radioactive material was released into the atmosphere after the accident of the Fukushima Daiichi Nuclear Power Plant following the Tohoku earthquake on 11 March 2011, and traces of these materials were detected in Tsukuba. Because radioactive materials can adhere to vegetables, the authors made a qualitative evaluation of vegetables in Tsukuba, estimated internal exposure dose based on quantitative measurement results, and investigated several decontamination methods. Qualitative analysis of vegetable contamination was done by autoradiography. Quantitative analysis was done using a high-purity germanium detector. To assess decontamination, two methods were tested: one with running water and the other with boiling water. In addition, boiled soup stock was measured. In the qualitative evaluation by autoradiography, radioactive materials were not uniformly distributed but adhered to vegetables in clumps and hot spots. In the quantitative evaluation to measure contamination of outer and inner leaves of sanchu lettuce, it was observed that the concentration of I was 8,031.35 ± 764.79 Bq kg in the outer leaves and 115.28 ± 20.63 Bq kg in the inner leaves. In addition, the concentration of Cs was 1,371.93 ± 366.45 Bq kg in the outer leaves and 9.68 ± 15.03 Bq kg in the inner leaves. This suggests that one can greatly reduce internal exposure dose by removing the outer leaves if one has to eat vegetables just after a nuclear accident. In the decontamination assessment, a decontamination efficiency of up to 70% was achieved by boiling vegetables for 20 min.
To improve the performance of multi-stage gas-bubble columns with perforated plates, on-off pulsating mods" superposed on the feed gas stream, and flow and transfer behaviours are measured for the column By the superposition of pulsating motion, the range of otabe operation is increased, and gas bubbles are broken smaller ones, both without losing the advantage' of usue multistaged gas bubble columns. Licuid phase mase transfer coefficient k is also improved for the deson ption of carbon dioxide from water by air stream.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.