Culturable leaf-associated bacteria inhabiting a plant have been considered as promising biological control agent (BCA) candidates because they can survive on the plant. We investigated the relationship between bacterial groups of culturable leaf-associated bacteria on greenhouse- and field-grown tomato leaves and their antifungal activities against tomato diseases in vitro and in vivo. In addition, the isolated bacteria were analyzed for N-acyl-homoserine lactone (AHL) and indole-3-acetic acid (IAA) production, which have been reported to associate with bacterial colonization, and resistance to a tomato alkaloid (alpha-tomatine). Leaf washings and subsequent leaf macerates were used to estimate the population size of epiphytic and more internal bacteria. Bacterial population sizes on leaves at the same position increased as the leaves aged under both greenhouse and field conditions. Field-grown tomatoes had significantly larger population sizes than greenhouse-grown tomatoes. Analysis of 16S rRNA gene (rDNA) sequencing using 887 culturable leaf-associated bacteria revealed a predominance of the Bacillus and Pseudomonas culturable leaf-associated bacterial groups on greenhouse- and field-grown tomatoes, respectively. Curtobacterium and Sphingomonas were frequently recovered from both locations. From the 2138 bacterial strains tested, we selected several strains having in vitro antifungal activity against three fungal pathogens of tomato: Botrytis cinerea, Fulvia fulva, and Alternaria solani. Among bacterial strains with strong in vitro antifungal activities, Bacillus and Pantoea tended to show strong antifungal activities, whereas Curtobacterium and Sphingomonas were not effective. The results indicated the differences in antifungal activity among predominant bacterial groups. Analysis of alpha-tomatine resistance revealed that most bacterial strains in the dominant groups exhibited moderate or high resistance to alpha-tomatine in growth medium. Furthermore, some Sphingomonas and Pantoea strains showed AHL and IAA production activities. Strain 125NP12 (Pantoea ananatis) showed particular alpha-tomatine resistance, and AHL and IAA production had the highest protective value (91.7) against gray mold. Thus, the differences of these physiological properties among dominant bacteria may be associated with the disease suppression ability of BCAs on tomato plants.
Eleven isolates of a species of Colletotrichum were collected from eight plant species (Crinum asiaticum var. sinicum, Passiflora edulis, Cucumis melo, Cymbidium sp., Clivia miniata, Cattleya sp., Prunus mume, and Dendrobium kingianum) at six locations on the Pacific Coast of Japan. Although the fungus had been once identified as Colletotrichum gloeosporioides sensu lato, it was clearly different from C. gloeosporioides sensu stricto in its wide conidia [l/b ratio: (1.8-) 2-3 (-3.3)], having a hilumlike conidial base and cream-to orange-colored colonies on PDA. The intraspecific DNA homologies of the ITS1 sequence were 96.9%-100%, but interspecifically 80.2%-82.3% with C. gloeosporioides. Based on the morphological and molecular characterization, the fungus is proposed as a new species, Colletotrichum boninense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.