This study was designed to investigate the neuroprotective effect of intrinsic and extrinsic erythropoietin (EPO) against hypoxia/ischemia, and determine the optimal time-window with respect to the EPO-induced neuroprotection. Experiments were conducted using primary mixed neuronal/astrocytic cultures and neuron-rich cultures. Hypoxia (2%) induces hypoxia-inducible factor-1a (HIF-1a) activity followed by strong EPO expression in mixed cultures and weak expression in neuron-rich cultures as documented by both western blot and RT-PCR. Immunoreactive EPO was strongly detected in astrocytes, whereas EPOR was only detected in neurons. Neurons were significantly damaged in neuron-rich cultures but were distinctly rescued in mixed cultures. Application of recombinant human EPO (rhEPO) (0.1 U/mL) within 6 h before or after hypoxia significantly increased neuronal survival compared with no rhEPO treatment. Application of rhEPO after onset of reoxygenation achieved the maximal neuronal protection against ischemia/reperfusion injury (6 h hypoxia followed 24 h reoxygenation). Our results indicate that HIF-1a induces EPO gene released by astrocytes and acts as an essential mediator of neuroprotection, prove the protective role of intrinsic astrocytic-neuronal signaling pathway in hypoxic/ischemic injury and demonstrate an optimal therapeutic time-window of extrinsic rhEPO in ischemia/reperfusion injury in vitro. The results point to the potential beneficial effects of HIF-1a and EPO for the possible treatment of stroke. Keywords: erythropoietin, hypoxia-inducible factor-1, hypoxia/ischemia injury, neuroprotection. Erythropoietin (EPO) has emerged as a potent neuroprotectant in vivo and in vitro (Morishita et al. 1997;Bernaudin et al. 1999;Siren et al. 2001a). In the brain, EPO gene expression is regulated by the transcription factor hypoxiainducible factor-1 (HIF-1), which is activated by a variety of stressors, including hypoxia (Semenza 2000). EPO-induced neuroprotection is mediated by interaction with the cognate receptor EPOR (Chong et al. 2002;Marti 2004). The main cellular source of intrinsic EPO in the brain appears to be astrocytes (Masuda et al. 1994;Marti et al. 1996). In addition Bernaudin et al. (2000) provided direct evidence that not only astrocytes but also neurons express and produce EPO after hypoxia.However, there are no studies that compared the EPO expression levels and the neuroprotective effect between mixed neuronal/astrocytic cultures and neuron-rich cultures. In the present study, we determined EPO expression levels and its neuroprotective effect using both mixed neuronal/astrocytic cultures and neuron-rich cultures exposed to hypoxia and reoxygenation. We considered that the in vitro model of mixed culture might be more physiological than separate cultures for addressing the protective role of intrinsic astrocytic-neuronal signaling in hypoxic/ischemic injury. Furthermore, we compared neuronal survival in the presence or absence of antibodies against EPOR to examine whether neuroprotection i...
The intracellular accumulation of amyloid-β (Aβ) oligomers critically contributes to disease progression in Alzheimer’s disease (AD) and can be the potential target of AD therapy. Direct observation of molecular dynamics of Aβ oligomers in vivo is key for drug discovery research, however, it has been challenging because Aβ aggregation inhibits the fluorescence from fusion proteins. Here, we developed Aβ1-42-GFP fusion proteins that are oligomerized and visualize their dynamics inside cells even when aggregated. We examined the aggregation states of Aβ-GFP fusion proteins using several methods and confirmed that they did not assemble into fibrils, but instead formed oligomers in vitro and in live cells. By arranging the length of the liker between Aβ and GFP, we generated two fusion proteins with “a long-linker” and “a short-linker”, and revealed that the aggregation property of fusion proteins can be evaluated by measuring fluorescence intensities using rat primary culture neurons transfected with Aβ-GFP plasmids and Aβ-GFP transgenic C. elegans. We found that Aβ-GFP fusion proteins induced cell death in COS7 cells. These results suggested that novel Aβ-GFP fusion proteins could be utilized for studying the physiological functions of Aβ oligomers in living cells and animals, and for drug screening by analyzing Aβ toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.