We report a cryogenic transimpedance amplifier (TA) suitable for cross-correlation current-noise measurements. The TA comprises homemade high-electron-mobility transistors with high transconductance and low noise characteristics, fabricated in an AlGaAs/GaAs heterostructure. The low input-referred noise and wide frequency band of the TA lead to a high resolution in current-noise measurements. The TA’s low input impedance suppresses unwanted crosstalk between two distinct currents from a sample, justifying the advantage of the TA for cross-correlation measurements. We demonstrate the high resolution of a TA-based experimental setup by measuring the shot noise generated at a quantum point contact in a quantum Hall system.
We developed a high-speed and low-noise time-domain current measurement scheme using a homemade GaAs high-electron-mobility-transistor-based cryogenic transimpedance amplifier (TIA). The scheme is versatile for broad cryogenic current measurements, including semiconductor spin-qubit readout, owing to the TIA's having low input impedance comparable to that of commercial room-temperature TIAs. The TIA has a broad frequency bandwidth and a low noise floor, with a trade-off between them governed by the feedback resistance RFB. A lower RFB of 50 kΩ enables high-speed current measurement with a −3 dB cutoff frequency f−3dB = 28 MHz and noise-floor NF = 8.5 × 10−27 A2/Hz, while a larger RFB of 400 kΩ provides low-noise measurement with NF = 1.0 × 10−27 A2/Hz and f−3dB = 4.5 MHz. Time-domain measurement of a 2-nA peak-to-peak square wave, which mimics the output of the standard spin-qubit readout technique via charge sensing, demonstrates a signal-to-noise ratio (SNR) of 12.7, with the time resolution of 48 ns, for RFB = 200 kΩ, which compares favorably with the best-reported values for the radio frequency reflectometry technique. The time resolution can be further improved at the cost of the SNR (or vice versa) by using an even smaller (larger) RFB, with a further reduction in the noise figure possible by limiting the frequency band with a low-pass filter. Our scheme is best suited for readout electronics for cryogenic sensors that require a high time resolution and current sensitivity and, thus, provides a solution for various fundamental research and industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.