Pig cloning will have a marked impact on the optimization of meat production and xenotransplantation. To clone pigs from differentiated cells, we microinjected the nuclei of porcine (Sus scrofa) fetal fibroblasts into enucleated oocytes, and development was induced by electroactivation. The transfer of 110 cloned embryos to four surrogate mothers produced an apparently normal female piglet. The clonal provenance of the piglet was indicated by her coat color and confirmed by DNA microsatellite analysis.
BackgroundThe number of vertebrae in pigs varies and is associated with body size. Wild boars have 19 vertebrae, but European commercial breeds for pork production have 20 to 23 vertebrae. We previously identified two quantitative trait loci (QTLs) for number of vertebrae on Sus scrofa chromosomes (SSC) 1 and 7, and reported that an orphan nuclear receptor, NR6A1, was located at the QTL on SSC1. At the NR6A1 locus, wild boars and Asian local breed pigs had the wild-type allele and European commercial-breed pigs had an allele associated with increased numbers of vertebrae (number-increase allele).ResultsHere, we performed a map-based study to define the other QTL, on SSC7, for which we detected genetic diversity in European commercial breeds. Haplotype analysis with microsatellite markers revealed a 41-kb conserved region within all the number-increase alleles in the present study. We also developed single nucleotide polymorphisms (SNPs) in the 450-kb region around the QTL and used them for a linkage disequilibrium analysis and an association study in 199 independent animals. Three haplotype blocks were detected, and SNPs in the 41-kb region presented the highest associations with the number of vertebrae. This region encodes an uncharacterized hypothetical protein that is not a member of any other known gene family. Orthologs appear to exist not only in mammals but also birds and fish. This gene, which we have named vertnin (VRTN) is a candidate for the gene associated with variation in vertebral number. In pigs, the number-increase allele was expressed more abundantly than the wild-type allele in embryos. Among candidate polymorphisms, there is an insertion of a SINE element (PRE1) into the intron of the Q allele as well as the SNPs in the promoter region.ConclusionsGenetic diversity of VRTN is the suspected cause of the heterogeneity of the number of vertebrae in commercial-breed pigs, so the polymorphism information should be directly useful for assessing the genetic ability of individual animals. The number-increase allele of swine VRTN was suggested to add an additional thoracic segment to the animal. Functional analysis of VRTN may provide novel findings in the areas of developmental biology.
The number of vertebrae in pigs varies and is associated with meat productivity. Wild boars, which are ancestors of domestic pigs, have 19 vertebrae. In comparison, European commercial breeds have 21-23 vertebrae, probably owing to selective breeding for enlargement of body size. We previously identified two quantitative trait loci (QTL) for the number of vertebrae on Sus scrofa chromosomes (SSC) 1 and 7. These QTL explained an increase of more than two vertebrae. Here, we performed a map-based study to define the QTL region on SSC1. By using three F 2 experimental families, we performed interval mapping and recombination analyses and defined the QTL within a 1.9-cM interval. Then we analyzed the linkage disequilibrium of microsatellite markers in this interval and found that 10 adjacent markers in a 300-kb region were almost fixed in European commercial breeds. Genetic variation of the markers was observed in Asian local breeds or wild boars. This region encoded an orphan nuclear receptor, germ cell nuclear factor (NR6A1, formerly known as GCNF), which contained an amino acid substitution (Pro192Leu) coincident with the QTL. This substitution altered the binding activity of NR6A1 to its corepressors, nuclear receptor-associated protein 80 (RAP80) and nuclear receptor corepressor 1 (NCOR1). In addition, somites of mouse embryos demonstrated expression of NR6A1 protein. Together, these results suggest that NR6A1 is a strong candidate for one of the QTL that influence number of vertebrae in pigs.
In order to locate the genetic regions in the swine genome that are responsible for economically important traits, a resource population has been constructed by mating two female Meishan pigs with a male Göttingen miniature pig. In subsequent generations, 265 F2 offspring were produced from two F1 males and 19 F1 females. The F2 offspring were scored for eight traits including growth rate, teat number, vertebra number and backfat thickness, and genotyped for 318 genetic markers spanning the swine genome. Least-square analysis revealed quantitative trait loci (QTL) effects for vertebra number on chromosomes 1 and 2; for teat number on chromosomes 1 and 7; for birth weight on chromosome 1; for average daily gain between 4 and 13 weeks of age on chromosomes 9 and 10; for backfat thickness on chromosome 7; and for backskin thickness on chromosome 3.
We investigated the effect of fibronectin on epithelial migration onto the stroma in cultured rabbit cornea. Rabbit plasma fibronectin was purified by affinity chromatography using gelatin-Sepharose 4B, and its purity was confirmed by SDS polyacrylamide slab gel electrophoresis. Antibody against rabbit plasma fibronectin raised in guinea pigs formed a single precipitin line against rabbit plasma and purified rabbit plasma fibronectin by Ouchterlony double diffusion test. When rabbit cornea was cut into small blocks and cultured in TCM-199 medium alone, corneal epithelial cells began to migrate on the cut edge of the corneal stroma. The addition of purified rabbit plasma fibronectin to the culture medium significantly enhanced epithelial migration. The degree of enhancement depended on the amount of fibronectin added. When guinea pig IgG anti-rabbit plasma fibronectin was added, epithelial migration was significantly inhibited when compared with that in control cultured corneal blocks. The results demonstrate that fibronectin promotes epithelial migration in the cornea and thus plays an important role in corneal wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.