SUMMARY The nuclear ribosomal DNA internal transcribed spacer (ITS‐1 and ITS‐2) sequences were determined for 10 of 12 Japanese non‐digitate Laminaria species, Kjell‐maniella gyrata (Kjellman) Miyabe, Costaria costata (Turner) Saunders, Alaria praelonga Kjellman and Chorda filum (L.) Stackhouse collected at Hokkaido. Phyloge‐netic analyses (maximum parsimony and distance matrix) of these sequences, including published data for L. sac‐charina (L.) Lamouroux from Canada, showed strong nucleotide conservation among these species of Laminaria, but two phylogenetically distinct species groups were recognized. A L. japonica group encompassing L. yapon/ca Areschoug, L. religiosa Miyabe, L. ochotensis Miyabe, L. diabolica Miyabe, L. longipedalis Okamura, L. angustata Kjellman and L. longissima Miyabe; and a L. saccharina group including L. coriacea Miyabe, L. sac‐charina, L. cichorioides Miyabe and L. yendoana Miyabe. As to other laminarialean genera, Kjellmaniella gyrata was most closely related to the genus Laminaria, being related to the second Laminaria species group based on both parsimony and distant tree values.
To assess phylogenetic relationships and speciation modes in Closterium, we sequenced two noncoding regions of the nuclear ribosomal cistron, the 1506 group I intron in small subunit and the internal transcribed spacer 2, for a total of 58 strains of the Closterium moniliferum‐ehrenbergii species complex. These include both homothallic and heterothallic C. moniliferum Erenberg ex Ralfs v. moniliferum, heterothallic C. moniliferum v. submoniliferum (Woronichin) Krieger, and heterothallic C. ehrenbergii Meneghini ex Ralfs that can be divided into several mating groups. We found no or very little sequence divergence within single mating groups of C. ehrenbergii and among all heterothallic strains of C. moniliferum v. moniliferum or C. moniliferum v. submoniliferum. Nevertheless, sequence divergence was much greater between those mating groups of C. ehrenbergii and also among the three traditional taxa. Maximum parsimony and maximum likelihood analyses showed that the taxon C. ehrenbergii was not monophyletic. The two varieties of C. moniliferum appeared as a sister clade to certain mating groups of C. ehrenbergii. Among the clades that were recovered in different trees by maximum parsimony and maximum likelihood analyses, we consistently found two large conspicuous clades: clade I consisted of mating groups A, B, C, H, K, and L of C. ehrenbergii whose zygospores have smooth‐walls, and clade II contained the mating groups D, E, I, J, and S whose zygospores are scrobiculate. Phylogenetic incongruences observed are discussed from the viewpoints of the different molecular nature of the group I intron and internal transcribed spacer 2, as well as putative rapid diversification of the mating groups and probable ancient ancestral hybridization.
We newly sequenced the nuclear‐encoded small subunit (SSU) rDNA coding region for 21 taxa of the genus Closterium. The new sequences were integrated into an alignment with 13 known sequences of conjugating green algae representing six traditional families (i.e. Zygnemataceae, Mesotaeniaceae, Gonatozygaceae, Peniaceae, Closteriaceae, and Desmidiaceae) and five known charophycean sequences as outgroups. Both maximum likelihood and maximum parsimony analyses supported with high bootstrap values one large clade containing all placoderm desmids (Desmidiales). All the Closterium taxa formed one clade with 100% bootstrap support, indicating their monophyly, but not paraphyly, as suggested earlier. As to the taxa within the genus Closterium, we found two clades of morphologically closely related taxa in both maximum likelihood and maximum parsimony trees. They corresponded to the C. calosporum species complex and the C. moniliferum‐ehrenbergii species complex. It is of particular interest that the homothallic entity of C. moniliferum v. moniliferum was distinguished from and ancestral to all other entities of the C. moniliferum‐ehrenbergii species complex. Superimposing all 50 charophycean sequences on the higher order SSU rRNA structure model of Closterium, we investigated degrees of nucleotide conservation at a given position in the nucleotide sequence. A characteristic “signature” structure to the genus Closterium was found as an additional helix at the tip of V1 region. In addition, eight base deletions at the tip of helix 10 were found to be characteristic of the C. calosporum species complex, C. gracile, C. incurvum, C. pleurodermatum, and C. pusillum v. maius. These taxa formed one clade with an 82% bootstrap value in maximum parsimony analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.