The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.
During vascular development, procambial and cambial cells give rise to xylem and phloem cells. Because the vascular tissue is deeply embedded, it has been difficult to analyze the processes of vascular development in detail. Here, we establish a novel in vitro experimental system in which vascular development is induced in Arabidopsis thaliana leaf-disk cultures using bikinin, an inhibitor of glycogen synthase kinase 3 proteins. Transcriptome analysis reveals that mesophyll cells in leaf disks synchronously turn into procambial cells and then differentiate into tracheary elements. Leaf-disk cultures from plants expressing the procambial cell markers TDR(pro):GUS and TDR(pro):YFP can be used for spatiotemporal visualization of procambial cell formation. Further analysis with the tdr mutant and TDIF (tracheary element differentiation inhibitory factor) indicates that the key signaling TDIF-TDR-GSK3s regulates xylem differentiation in leaf-disk cultures. This new culture system can be combined with analysis using the rich material resources for Arabidopsis including cell-marker lines and mutants, thus offering a powerful tool for analyzing xylem cell differentiation.
Summary• We studied how different color lights cause gradients of photoinhibition within a leaf, to attempt to resolve the controversy of whether photon absorption by chlorophyll or by manganese (Mn) is the primary cause of photoinhibition, as suggested by the excess-energy hypothesis or the two-step hypothesis, respectively.• Lincomycin-treated leaf discs were photoinhibited by white, blue, green or red light. Combining a microfiber fluorometer, a fiber-thinning technique and a micromanipulator enabled us to measure the chlorophyll fluorescence signals within a leaf. Photoinhibition gradients were also compared with results from various conventional fluorometers to estimate their depth of signal detection.• The severity of photoinhibition was in the descending order of blue, red and green light near the adaxial surface, and in the descending order of blue, green and red light in the deeper tissue, which correlated with the chlorophyll and the Mn absorption spectrums, respectively. These results cannot be explained by either hypothesis alone.• These data strongly suggest that both the excess-energy and the two-step mechanisms occur in photoinhibition, and fluorometers with red or blue measuring light give overestimated or underestimated F v ⁄F m values of photoinhibited leaves compared with the whole tissue average, respectively; that is, they measured deeper or shallower leaf tissue, respectively.
A series of hindered phenols were investigated as hypolipidemic and/or hypoglycemic agents with ability to inhibit lipid peroxidation. 1,3-Benzoxathioles (9 and 22), phenoxypentanoic acid (34), phenoxypentanol (35a), phenoxynonanol (35b), phenylchloropropionic acid having a chromanyl group (25), and a thiazolidine compound (27) derived from 25, all having a hindered phenol group, were prepared and examined. Compound 27 showed the expected biological properties in vivo and in vitro without any liver weight increase. Biological activities of the analogous thiazolidine compounds, 43-58, were compared. Thus, (+/-)-5-[4-[(6-hydroxy-2,5,7,8-tetramethylchroman-2-yl)methoxy]- benzyl]-2,4-thiazolidinedione (27) (CS-045) was found to have all of our expected properties and was selected as a candidate for further development as a hypoglycemic and hypolipidemic agent.
Summary Previous studies have suggested that the mesophyll contributes to stomatal CO2 responses. The effects of changes in CO2 concentration (100 or 700 ppm) on stomatal responses in red or white light were examined microscopically in a leaf segment, an epidermal strip and an epidermal strip placed on a mesophyll segment of Commelina communis, all mounted on a buffer‐containing gel. In both red and white light, stomata of the leaf segment opened/closed rapidly at low/high CO2. In red light, epidermal strip stomata barely responded to CO2. In white light, they opened at low CO2, but hardly closed at high CO2. Stomata of the epidermal strip placed on the mesophyll responded in the same manner as those on the leaf segment. Insertion of a doughnut‐shaped cellophane spacer (but not polyethylene spacer) between the epidermal strip and the mesophyll hardly altered these responses. Stomata in leaf segments treated with 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU), a photosynthesis inhibitor, did not open in red light, but opened/closed at low/high CO2 in white light. These results indicate that the apoplast transfer of ‘mesophyll signals’ and the stomatal opening at low CO2 are dependent on photosynthesis, whereas the stomatal closure at high CO2 is independent of photosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.