The relationships among magnetism, lattice modulation, and dielectric properties have been investigated for RMnO3 (R=Eu, Gd, Tb, and Dy). These compounds show a transition to an incommensurate lattice structure below their Néel temperature, and subsequently undergo an incommensurate-commensurate (IC-C) phase transition. For TbMnO3 and DyMnO3 it was found that the IC-C transition is accompanied by a ferroelectric transition, associated with a lattice modulation in the C phase. DyMnO3 shows a gigantic magnetocapacitance with a change of dielectric constant up to Deltaepsilon/epsilon approximately 500%.
We report on the effects of partial substitution of nickel by palladium on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. It is shown that the substitution of palladium for nickel results in a significant, beneficial reduction of the thermal conductivity. The Seebeck coefficient also decreases, but only by a small amount. In the Hf 0.5 Zr 0.5 Ni 0.8 Pd 0.2 Sn 0.99 Sb 0.01 compound, a power factor of 22.1 W K Ϫ2 cm Ϫ1 and a thermal conductivity as low as 4.5 W/m K are measured at room temperature. The dimensionless figure of merit ZT increases with increasing temperature and reaches a maximum value of 0.7 at about 800 K.
Barium-filled skutterudites BayCo4Sb12 with an anomalously large filling fraction of up to y=0.44 have been synthesized. The lattice parameters increase linearly with Ba content. Magnetic susceptibility data show that Ba0.44Co4Sb12 is paramagnetic, which implies that some of the Co atoms in BayCo4Sb12 have acquired a magnetic moment. The presence of the two different valence states of Co (Co3+ and Co2+) leads to the anomalously large barium filling fraction even without extra charge compensation. All samples show n-type conduction. The electrical conductivity increases with increasing the Ba filling fraction. The lattice thermal conductivity of BayCo4Sb12 is significantly depressed as compared to unfilled Co4Sb12. The dimensionless thermoelectric figure of merit, ZT, increases with increasing temperature reaching a maximum value of 1.1 for Ba0.24Co4Sb12 at 850 K.
We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.