For ion beam radiation therapy, the measurement of effective atomic numbers is necessary to know the material distribution in a human body: the range of ion beams entering the human body is influenced by the material distribution along their paths. Effective atomic numbers, however, cannot be measured at hospitals because monochromatic X-rays with different energies are necessary and are used only at synchrotron facilities. To make the effective atomic number measurements at hand, we propose energy-resolved computed tomography (CT) using a "transXend detector". By assigning two narrow energy ranges in the unfolding process of the data obtained by the transXend detector, the effective atomic numbers for acrylic and aluminum can be estimated by energy-resolved CT. The estimated effective atomic numbers are compared with those obtained by dual-energy and monochromatic X-ray CT.
We evaluated two dual-energy cone-beam computed tomography (DE-CBCT) methodologies for a bench-top micro-CBCT system to reduce metal artifacts on reconstructed images. Two filter-based DE-CBCT methodologies were tested: (i) alternative spectral switching and (ii) simultaneous beam splitting. We employed filters of 0.6-mm-thick tin and 0.1-mm-thick tungsten to generate high- and low-energy spectra from 120 kVp X-rays, respectively. The spectral switching method was imitated by two half scans with different filters (pseudo-switching). Filters were placed and between the X-ray tube and a phantom (‘1-u,’ ‘2-u’), a phantom and a flat panel detector (‘1-d,’ ‘2-d’), and compared with (iii) two half scans at 80 and 140 kVp [pseudo-(80,140)]. For the splitting method, two half-width filters were aligned along a rotating axis. Projections were separated into halves and merged with corresponding areas of opposed projections after one full rotation. A solid 30-mm-diameter acrylic phantom and an acrylic phantom with four 5-mm-diameter titanium rods were used. DE images were generated by weighted summation of the high- and low-energy images. The blending factor was changed from 0 to +5 in increments of 0.01. Relative errors (REs) of the linear attenuation coefficients of the two phantoms and the contrast-to-noise ratios (CNRs) between the titanium and acrylic regions were compared. All methods showed zero REs except for the method (2-d). CNRs for pseudo-switching with upstream placement were 1.4-fold larger than CNRs for the pseudo-(80,140) method. CNRs for the downstream placements were small. It was concluded that the pseudo-switching method with upstream placement is appropriate for reducing metal artifacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.