Silent-slip events have been detected at several subduction zones, but the cause of these events is unknown. Using seismic imaging, we detected a cause of the Tokai silent slip, which occurred at a presumed fault zone of a great earthquake. The seismic image that we obtained shows a zone of high pore fluid pressure in the subducted oceanic crust located down-dip of a subducted ridge. We propose that these structures effectively extend a region of conditionally stable slips and consequently generate the silent slip.
[1] We show fine-scale variations of seismic velocities and converted teleseismic waves that reveal the presence of zones of high-pressure fluids released by progressive metamorphic dehydration reactions in the subducting Philippine Sea plate in Tokai district, Japan. These zones have a strong correlation with the distribution of slow earthquakes, including long-term slow slip (LTSS) and low-frequency earthquakes (LFEs). Overpressured fluids in the LTSS region appear to be trapped within the oceanic crust by an impermeable cap rock in the fore-arc, and impede intraslab earthquakes therein. In contrast, fluid pressures are reduced in the LFE zone, which is deeper than the centroid of the LTSS, because there fluids are able to infiltrate into the narrow corner of the mantle wedge, leading to mantle serpentinization. The combination of fluids released from the subducting oceanic crust with heterogeneous fluid transport properties in the hanging wall generates variations of fluid pressures along the downgoing plate boundary, which in turn control the occurrence of slow earthquakes. Citation: Kato, A., et al. (2010), Variations of fluid pressure within the subducting oceanic crust and slow earthquakes, Geophys.
[1] The Seismic Array Hikurangi Experiment (SAHKE) investigated the structure of the forearc and subduction plate boundary beneath the southern North Island along a 350 km transect. Tomographic inversion of first-arrival travel times was used to derive a well-resolved 15-20 km deep P wave image of the crust. The refracted phases and migrated reflection events image subducting slab geometry and crustal structure. In the west, Australian Plate Moho depth decreases westward across the Taranaki Fault system from 35 to $28-30 km. In the east, subducted Pacific Plate oceanic crust is recognized to have a positive velocity gradient, but becomes less distinct beneath the Tararua Ranges, where the interface increases in dip at about 15 km depth from <5 to >15 . This bend in the subducted plate is associated with vertical clusters in seismicity, splay fault branching, and low-velocity high-attenuation material that we interpret to be an underplated subduction sedimentary channel. We infer that a step down in the decollement transfers slip on the plate interface at the top of a subduction channel to the oceanic crust and drives local uplift of the Tararua Ranges. Reflections from the Wairarapa Fault show that it is listric and soles into the top of underplated sediments, which in turn abut the Moho of the overriding plate at $32 km depth, near the downdip end of the strongly locked
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.