BackgroundAlthough quantitative analysis using standardized uptake value (SUV) becomes realistic in clinical single-photon emission computed tomography/computed tomography (SPECT/CT) imaging, reconstruction parameter settings can deliver different quantitative results among different SPECT/CT systems. This study aims to propose a use of the digital reference object (DRO), which is a National Electrical Manufacturers Association (NEMA) phantom-like object developed by the Quantitative Imaging Biomarker Alliance (QIBA) fluorodeoxyglucose-positron emission tomography technical committee, for the purpose of harmonizing SUVs in Tc-99m SPECT/CT imaging.MethodsThe NEMA body phantom with determined Tc-99m concentration was scanned with the four state-of-the-art SPECT/CT systems. SPECT data were reconstructed using different numbers of the product of subset and iteration numbers (SI) and the width of 3D Gaussian filter (3DGF). The mean (SUVmean), maximal (SUVmax), and peak (SUVpeak) SUVs for six hot spheres (10, 13, 17, 22, 28, and 37 mm) were measured after converting SPECT count into SUV using Becquerel calibration factor. DRO smoothed by 3DGF with a FWHM of 17 mm (DRO17 mm) was generated, and the corresponding SUVs were measured. The reconstruction condition to yield the lowest root mean square error (RMSE) of SUVmeans for all the spheres between DRO17 mm and actual phantom images was determined as the harmonized condition for each SPECT/CT scanner. Then, inter-scanner variability in all quantitative metrics was measured before (i.e., according to the manufacturers’ recommendation or the policies of their own departments) and after harmonization.ResultsRMSE was lowest in the following reconstruction conditions: SI of 100 and 3DGF of 13 mm for Brightview XCT, SI of 160 and 3DGF of 3 pixels for Discovery NM/CT, SI of 60 and 3DGF of 2 pixels for Infinia, and SI of 140 and 3DGF of 15 mm for Symbia. In pre-harmonized conditions, coefficient of variations (COVs) among the SPECT/CT systems were greater than 10% for all quantitative metrics in three of the spheres, SUVmax and SUVmean, in one of the spheres. In contrast, all metrics except SUVmax in the 17-mm sphere yielded less than 10% of COVs after harmonization.ConclusionsOur proposed method clearly reduced inter-scanner variability in SUVs. A digital phantom developed by QIBA would be useful for harmonizing SUVs in multicenter trials using SPECT/CT.
The diagnostic reference levels (DRLs) are one of several effective tools for optimizing nuclear medicine examinations and reducing patient exposure. With the advances in imaging technology and alterations of examination protocols, the DRLs must be reviewed periodically. The first DRLs in Japan were established in 2015, and since 5 years have passed, it is time to review and revise the DRLs. We conducted a survey to investigate the administered activities of radiopharmaceuticals and the radiation doses of computed tomography (CT) in hybrid CT accompanied by single photon emission computed tomography (SPECT)/CT and positron emission tomography (PET)/CT. We distributed a Web-based survey to 915 nuclear medicine facilities throughout Japan and survey responses were provided by 256 nuclear medicine facilities (response rate 28%). We asked for the facility's median actual administered activity and median radiation dose of hybrid CT when SPECT/CT or PET/CT was performed for patients with standard habitus in the standard protocol of the facility for each nuclear medicine examination. We determined the new DRLs based on the 75th percentile referring to the 2015 DRLs, drug package inserts, and updated guidelines. The 2020 DRLs are almost the same as the 2015 DRLs, but for the relatively long-lived radionuclides, the DRLs are set low due to the changes in the Japanese delivery system. There are no items set higher than the previous values. Although the DRLs determined this time are roughly equivalent to the DRLs used in the US, overall they tend to be higher than the European DRLs. The DRLs of the radiation dose of CT in hybrid CT vary widely depending on each imaging site and the purpose of the examination.
ObjectiveTo assess the cerebral blood flow (CBF) in patients with diabetic neuropathic pain, and its changes after duloxetine therapy.MethodsUsing iodine-123-N-isopropyl-p-iodoamphetamine single-photon emission computed tomography (IMP-SPECT), we performed a cross-sectional study of 44 patients with diabetes, and compared CBF in those with (n = 24) and without neuropathic pain (n = 20). In patients with neuropathic pain, we also longitudinally assessed changes in CBF 3 months after treatment with duloxetine.ResultsIMP-SPECT with voxel-based analyses showed a significant increase in cerebral blood flow in the right anterior cingulate cortex and a decrease in the left ventral striatum in patients with neuropathic pain, compared with those without pain. After duloxetine treatment, volume of interest analyses revealed a decrease in cerebral blood flow in the anterior cingulate cortex in patients with significant pain relief but not in non-responders. Furthermore, voxel-based whole brain correlation analyses demonstrated that greater baseline CBF in the anterior cingulate cortex was associated with better pain relief on the numerical rating scale.ConclusionsOur results suggest that the development of neuropathic pain is associated with increased activity in the anterior cingulate cortex, and greater baseline activation of this region may predict treatment responsiveness to pharmacological intervention.Trial registration numberUMIN000017130;Results.
Some medical compact cyclotrons have self-shielding to reduce neutron fluxes. Thermal neutron fluxes in an 18-MeV unshielded cyclotron room and in a 16.5-MeV self-shielded cyclotron room were evaluated. In addition, the radioactivities in concrete and metals due to thermal neutrons in the cyclotron rooms for 30 years were calculated of operation such that the sum of the ratio of the nuclide concentration to the nuclide clearance level was equal to 1. The thermal neutron flux from the unshielded cyclotron was approximately 10(2) cm(-2) s(-1), whereas that from the self-shielded cyclotron was approximately 10(2) cm(-2) s(-1). The thermal neutron fluxes for concrete, stainless steel, vessel steel, and aluminum that reached their clearance levels were 9.80 × 10(4), 2.17 × 10(3), 1.87 × 10(4), and 2.41 × 10(5) cm(-2) s(-1), respectively. The specific activities in the cyclotron room were found to be sufficiently below the clearance level when the self-shield was employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.