Objective To report the clinical, radiological, and immunological association of demyelinating disorders with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Methods Clinical and radiological analysis of a cohort of 691 patients with anti-NMDAR encephalitis. Determination of antibodies to NMDAR, aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) was performed using brain immunohistochemistry and cell-based assays. Results Twenty-three of 691 patients with anti-NMDAR encephalitis had prominent MRI and/or clinical features of demyelination. Group 1 included 12 patients in whom anti-NMDAR encephalitis was preceded or followed by independent episodes of NMO-spectrum disorder (5 cases, 4 anti-AQP4-positive), or brainstem or multifocal demyelinating syndromes (7 cases, all anti-MOG-positive). Group 2 included 11 patients in whom anti-NMDAR encephalitis occurred simultaneously with MRI and symptoms compatible with demyelination (5 AQ4-positive, 2 MOG-positive). Group 3 (136 controls) included 50 randomly selected patients with typical anti-NMDAR encephalitis, 56 with NMO, and 30 with multiple sclerosis: NMDAR-antibodies were detected only in the 50 anti-NMDAR patients, MOG-antibodies in 3/50 anti-NMDAR and 1/56 NMO patients, and AQP4-antibodies in 48/56 NMO and 1/50 anti-NMDAR patients (p<0.0001 for all comparisons with Groups 1 and 2). Most patients improved with immunotherapy, but compared with anti-NMDAR encephalitis the demyelinating episodes required more intensive therapy and resulted in more residual deficits. Only 1/23 NMDAR patients with signs of demyelination had ovarian teratoma compared with 18/50 anti-NMDAR controls (p=0.011) Interpretation Patients with anti-NMDAR encephalitis may develop concurrent or separate episodes of demyelinating disorders, and conversely patients with NMO or demyelinating disorders with atypical symptoms (e.g., dyskinesias, psychosis) may have anti-NMDAR encephalitis.
IMPORTANCE Although mutations in 26 causative genes have been identified in the spinocerebellar ataxias (SCAs), the causative genes in a substantial number of families with SCA remain unidentified.OBJECTIVE To identify the causative gene of SCA in 2 Japanese families with distinct neurological symptoms and radiological presentations. DESIGN, SETTING, AND PARTICIPANTSClinical genetic study at a referral center of 11 members from 2 Japanese families, which started in 1997. MAIN OUTCOMES AND MEASURESResults of neurological examinations and radiological evaluations. The causative mutation was identified using genome-wide linkage analysis and next-generation sequencing.RESULTS Affected members (9 of 11 members [81.8%]) showed slowly progressive cerebellar ataxia (all 9 members [100%]), ocular movement disturbance (all 9 members [100%]), and pyramidal tract signs (8 of 9 members [88.9%]) with an age at onset between the second and sixth decades of life. Besides cerebellar and pontine atrophy, magnetic resonance imaging of the brain revealed the hot cross bun sign (4 of 6 members [66.7%]), pontine midline linear hyperintensity (2 of 6 members [33.3%]), or high intensity in the middle cerebellar peduncle (1 of 6 members [16.7%]), which are all reminiscent of multiple system atrophy in tested patients. Using linkage analysis combined with exome and whole-genome sequencing, we identified a novel heterozygous mutation in the ELOVL fatty acid elongase 4 (ELOVL4) gene (c.736T>G, p.W246G) in both families. Haplotype analysis indicated that it was unlikely that these 2 Japanese families shared a common ancestor. Although a missense mutation in ELOVL4 (c.504G>C, p.L168F) was recently reported to be associated with SCA with erythrokeratodermia variabilis (SCA34) in a French-Canadian family, signs of erythrokeratodermia variabilis were absent in our families. CONCLUSIONS AND RELEVANCECombined with the results of the family with SCA34 reported previously, this report confirms that mutations in ELOVL4 can cause dominantly inherited neurodegeneration severely affecting the cerebellum and brainstem. We should be aware that the presence of multiple system atrophy-like features on magnetic resonance imaging scans, together with cerebellar and brainstem atrophy, suggests SCA34, even when erythrokeratodermia variabilis is absent. The present study further broadened the spectrum of the clinical presentations of SCA34 associated with mutations in ELOVL4, which is involved in the biosynthesis of very long-chain fatty acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.