Abstract:We have developed a new wind turbine system that consists of a diffuser shroud with a broad-ring brim at the exit periphery and a wind turbine inside it. The shrouded wind turbine with a brimmed diffuser has demonstrated power augmentation by a factor of about 2-5 compared with a bare wind turbine, for a given turbine diameter and wind speed. This is because a low-pressure region, due to a strong vortex formation behind the broad brim, draws more mass flow to the wind turbine inside the diffuser shroud.
The evolution of a primary vortex street shed from a circular cylinder in the far wake is experimentally examined for 70 < R < 154 (R is the Reynolds number). According to the vorticity fields obtained using digital image processing for visualized flow fields, the primary vortex street breaks down into a nearly parallel shear flow of Gaussian profile at a certain downstream distance, before a secondary vortex street of larger scale appears further downstream. The process leading to the nearly parallel flow can be explained as the evolution of the vortex regions of an inviscid fluid if we invoke the observation that the distance between the two rows in the primary vortex street increases with the downstream distance, although the viscous effect probably contributes to this increase. Numerical computations with the discrete vortex method also support this explanation. The wavelengths and speeds of the primary and secondary vortex street are also measured.
Abstract. Wind lens is a new type of wind power system consisting of a simple brimmed ring structure that surrounds the rotor causing greater wind to pass through the turbine. As a consequence, the turbine's efficiency of capturing energy from the wind gets dramatically increased. A Wind lens turbine can generate 2-5 times the power of an existing wind turbine given at the same rotor diameter and incoming wind speed. This fluid dynamical effect is also effective in the water. We have developed 1-3 kW Wind lens turbines and a 100 kW Wind lens turbine. In addition to the enhanced output power, Wind lens turbine is quiet. The technology is now used in an offshore experiment with a hexagonal float 18 meters in diameter set off the coast of Hakata Bay in Fukuoka City. Moreover, we are now pursuing larger size Wind lens turbines through multi-rotor design consisting of multiple Wind lens turbines in a same vertical plane to embody larger total power output.
Abstract:We have developed a new wind turbine system that consists of a diffuser shroud with a broad-ring brim at the exit periphery and a wind turbine inside it. The shrouded wind turbine with a brimmed diffuser has demonstrated power augmentation by a factor of about 2-5 compared with a bare wind turbine, for a given turbine diameter and wind speed. This is because a low-pressure region, due to a strong vortex formation behind the broad brim, draws more mass flow to the wind turbine inside the diffuser shroud.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.