It is unknown what occurs if both mitochondrial division and fusion are completely blocked. Here, we introduced mitochondrial stasis by deleting two dynamin-related GTPases for division (Drp1) and fusion (Opa1) in livers. Mitochondrial stasis rescues liver damage and hypotrophy caused by the single knockout (KO). At the cellular level, mitochondrial stasis re-establishes mitochondrial size and rescues mitophagy defects caused by division deficiency. Using Drp1KO livers, we found that the autophagy adaptor protein p62/sequestosome-1-which is thought to function downstream of ubiquitination-promotes mitochondrial ubiquitination. p62 recruits two subunits of a cullin-RING ubiquitin E3 ligase complex, Keap1 and Rbx1, to mitochondria. Resembling Drp1KO, diet-induced nonalcoholic fatty livers enlarge mitochondria and accumulate mitophagy intermediates. Resembling Drp1Opa1KO, Opa1KO rescues liver damage in this disease model. Our data provide a new concept that mitochondrial stasis leads the spatial dimension of mitochondria to a stationary equilibrium and a new mechanism for mitochondrial ubiquitination in mitophagy.
Defects in phosphatase and tensin homolog (PTEN) are associated with neurological disorders and tumors. PTEN functions at two primary intracellular locations: the plasma membrane and the nucleus. At the membrane, PTEN functions as a phosphatidylinositol (3,4,5)-trisphosphate phosphatase and suppresses PI 3-kinase signaling that drives cell growth and tumorigenesis. However, the function of nuclear PTEN is unclear. Here, using CRISPR/Cas9, we generated a mouse model in which PTEN levels in the nucleus are decreased. Nuclear PTEN-deficient mice were born with microcephaly and maintained a small brain during adulthood. The size of neuronal soma was significantly smaller in the cerebellum, cerebral cortex, and hippocampus. Also, these mice were prone to seizure. No changes in PI 3-kinase signaling were observed. By contrast, the size of other organs was unaffected. Therefore, nuclear PTEN is essential for the health of the brain by promoting the growth of neuronal soma size during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.