An acquired JAK2 V617F mutation is found in most patients with polycythemia vera (PV), and about half of patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF). Mice transplanted with bone marrow cells in which JAK2 V617F was retrovirally expressed developed PV-like features, but not ET or PMF. To address the contribution of this mutation to the pathogenesis of these three MPDs, we generated two lines of JAK2 V617F transgenic mice. One line showed granulocytosis after 4 months of age. Among 43 mice, 8 (19%) showed polycythemia and 15 (35%) showed thrombocythemia. The second line showed extreme leukocytosis and thromobocytosis. They showed anemia that means Hb value from 9 to 10 g per 100 ml when 1 month old. Myeloid cells and megakaryocytes were predominant in the bone marrow of these animals, and splenomegaly was observed. The expression of JAK2 V617F mRNA in bone marrow cells was 0.45 and 1.35 that of endogenous wild-type JAK2 in the two lines, respectively. In vitro analysis of bone marrow cells from both lines showed constitutive activation of ERK1/2, STAT5 and AKT, and augmentation of their phosphorylations by cytokine stimulation. We conclude that in vivo expression of JAK2 V617F results in ET-, PMF-and PV-like disease.
SummaryThe acquired JAK2 V617F mutation is observed in the majority of patients with BCR‐ABL1 negative chronic myeloproliferative neoplasms (MPN). BCR‐ABL1 negative MPN displays myeloproliferation with an elevated leucocyte alkaline phosphatase (LAP) activity, a neutrophil activation marker. We tried to separate the downstream signalling of JAK2 V617F to stimulate myeloproliferation and LAP activity. NB4, a myeloid lineage cell line, was transduced with Jak2 V617F mutation or wild‐type Jak2. We found that Jak2 V617F mutation, but not wild‐type Jak2 enhanced LAP expression in NB4‐derived neutrophils and proliferation of NB4 cells. JAK2 V617F induces constitutive phosphorylation of STAT3 and STAT5, and uses signalling targets such as Ras/MEK/ERK and PI3K/Akt pathways. By using MEK1/2 inhibitor U0126, PI3K inhibitor LY294002, and STAT3 or STAT5 siRNAs, JAK2 V617F was found to specifically use the STAT3 pathway to enhance LAP expression, while STAT5, Ras/MEK/ERK and PI3K/Akt, but not STAT3 pathways, were able to stimulate cell proliferation. These data strongly suggest that JAK2 V617F uses distinct signalling pathways to induce typical pathological features of MPN, such as high LAP activity and enhanced cell proliferation.
FLT3-ITD may increase potential for cell proliferation to produce a leukaemic population; NPM1-Mt may cause cells to develop along the myelomonocytic lineage. Extensive analyses and detailed experiments will be required to clarify how NPM1 and FLT3 mutations interact in leukaemogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.