A region located at kbp ؊3.9 to ؊2.6 5 to the first hematopoietic exon of the GATA-1 gene is necessary to recapitulate gene expression in both the primitive and definitive erythroid lineages. In transfection analyses, this region activated reporter gene expression from an artificial promoter in a position-and orientationindependent manner, indicating that the region functions as the GATA-1 gene hematopoietic enhancer (G1HE). However, when analyzed in transgenic embryos in vivo, G1HE activity was orientation dependent and also required the presence of the endogenous GATA-1 gene hematopoietic promoter. To define the boundaries of G1HE, a series of deletion constructs were prepared and tested in transfection and transgenic mice analyses. We show that G1HE contains a 149-bp core region which is critical for GATA-1 gene expression in both primitive and definitive erythroid cells but that expression in megakaryocytes requires the core plus additional sequences from G1HE. This core region contains one GATA, one GAT, and two E boxes. Mutational analyses revealed that only the GATA box is critical for gene-regulatory activity. Importantly, G1HE was active in SCL ؊/؊ embryos. These results thus demonstrate the presence of a critical network of GATA factors and GATA binding sites that controls the expression of this gene.
Gata3 mutant mice expire of noradrenergic deficiency by embryonic day (E) 11 and can be rescued pharmacologically or, as shown here, by restoring Gata3 function specifically in sympathoadrenal (SA) lineages using the human DBH promoter to direct Gata3 transgenic expression. In Gata3-null embryos, there was significant impairment of SA differentiation and increased apoptosis in adrenal chromaffin cells and sympathetic neurons. Additionally, mRNA analyses of purified chromaffin cells from Gata3 mutants show that levels of Mash1, Hand2 and Phox2b (postulated upstream regulators of Gata3) as well as terminally differentiated SA lineage products (tyrosine hydroxylase, Th, and dopamine -hydroxylase, Dbh) are markedly altered. However, SA lineage-specific restoration of Gata3 function in the Gata3 mutant background rescues the expression phenotypes of the downstream, as well as the putative upstream genes. These data not only underscore the hypothesis that Gata3 is essential for the differentiation and survival of SA cells, but also suggest that their differentiation is controlled by mutually reinforcing feedback transcriptional interactions between Gata3, Mash1, Hand2 and Phox2b in the SA lineage.
GATA-1 is essential for the development of erythroid and megakaryocytic lineages. We found that GATA-1 gene knockdown female (GATA-1.05/X) mice frequently develop a hematopoietic disorder resembling myelodysplastic syndrome that is characterized by the accumulation of progenitors expressing low levels of GATA-1. In this study, we demonstrate that GATA-1.05/X mice suffer from two distinct types of acute leukemia, an early-onset c-Kit-positive nonlymphoid leukemia and a late-onset B-lymphocytic leukemia. Since GATA-1 is an X chromosome gene, two types of hematopoietic cells reside within heterozygous GATA-1 knockdown mice, bearing either an active wild-type GATA-1 allele or an active mutant GATA-1.05 allele. In the hematopoietic progenitors with the latter allele, low-level GATA-1 expression is sufficient to support survival and proliferation but not differentiation, leading to the accumulation of progenitors that are easily targeted by oncogenic stimuli. Since such leukemia has not been observed in GATA-1-null/X mutant mice, we conclude that the residual GATA-1 activity in the knockdown mice contributes to the development of the malignancy. This de novo model recapitulates the acute crisis found in preleukemic conditions in humans.
Most T lymphocytes appear to arise from very rare early T lineage progenitors (ETPs) in the thymus, but the transcriptional programs that specify ETP generation are not completely known. The transcription factor GATA-3 is required for the development of T lymphocytes at multiple late differentiation steps as well as for the development of thymic natural killer cells. However, a role for GATA-3 before the double-negative (DN) 3 stage of T cell development has to date been obscured both by the developmental heterogeneity of DN1 thymocytes and the paucity of ETPs. We provide multiple lines of in vivo evidence through the analysis of T cell development in Gata3 hypomorphic mutant embryos, in irradiated mice reconstituted with Gata3 mutant hematopoietic cells, and in mice conditionally ablated for the Gata3 gene to show that GATA-3 is required for ETP generation. We further show that Gata3 loss does not affect hematopoietic stem cells or multipotent hematopoietic progenitors. Finally, we demonstrate that Gata3 mutant lymphoid progenitors exhibit neither increased apoptosis nor diminished cell-cycle progression. Thus, GATA-3 is required for the cell-autonomous development of the earliest characterized thymic T cell progenitors.
Most T lymphocytes appear to arise from very rare early T lineage progenitors (ETPs) in the thymus, but the transcriptional programs that specify ETP generation are not completely known. The transcription factor GATA-3 is required for the development of T lymphocytes at multiple late differentiation steps as well as for the development of thymic natural killer cells. However, a role for GATA-3 before the double-negative (DN) 3 stage of T cell development has to date been obscured both by the developmental heterogeneity of DN1 thymocytes and the paucity of ETPs. We provide multiple lines of in vivo evidence through the analysis of T cell development in Gata3 hypomorphic mutant embryos, in irradiated mice reconstituted with Gata3 mutant hematopoietic cells, and in mice conditionally ablated for the Gata3 gene to show that GATA-3 is required for ETP generation. We further show that Gata3 loss does not affect hematopoietic stem cells or multipotent hematopoietic progenitors. Finally, we demonstrate that Gata3 mutant lymphoid progenitors exhibit neither increased apoptosis nor diminished cell-cycle progression. Thus, GATA-3 is required for the cell-autonomous development of the earliest characterized thymic T cell progenitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.