Secondary and tertiary amino groups were introduced into polymer chains grafted onto a polyethylene flat-sheet membrane to evaluate the effects of surface properties on the adhesion and viability of a strain of the Gram-negative bacterium Escherichia coli and a strain of the Gram-positive bacterium Bacillus subtilis. The characterization of the surfaces containing amino groups, i.e. ethylamino (EA) and diethylamino (DEA) groups, revealed that the membrane potentials are proportional to amino-group densities and contact angle hysteresis. A high bacterial adhesion rate constant k was observed at high membrane potential, which indicates that membrane potential could be used as an indicator for estimating bacterial adhesion to the EA and DEA sheets, especially in B. subtilis. The bacterial adhesion rate constant of E. coli markedly increased at a membrane potential higher than "7?8 mV, whereas that of B. subtilis increased at a membrane potential higher than "8?3 mV, at which the dominant effect on bacterial adhesion is expected to change. The viability experiments revealed that approximately 80 % of E. coli cells adhering to the sheets with high membrane potential were inactivated after a contact time of 8 h, whereas 60 % of B. subtilis cells were inactivated. Furthermore, E. coli viability significantly decreased at a membrane potential higher than "8 mV, whereas B. subtilis viability decreased as membrane potential increased, which reflects differences in cell wall structure between E. coli and B. subtilis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.