Regnase-1 and Roquin are RNA binding proteins essential for degradation of inflammation-related mRNAs and maintenance of immune homeostasis. However, their mechanistic relationship has yet to be clarified. Here, we show that, although Regnase-1 and Roquin regulate an overlapping set of mRNAs via a common stem-loop structure, they function in distinct subcellular locations: ribosome/endoplasmic reticulum and processing-body/stress granules, respectively. Moreover, Regnase-1 specifically cleaves and degrades translationally active mRNAs and requires the helicase activity of UPF1, similar to the decay mechanisms of nonsense mRNAs. In contrast, Roquin controls translationally inactive mRNAs, independent of UPF1. Defects in both Regnase-1 and Roquin lead to large increases in their target mRNAs, although Regnase-1 tends to control the early phase of inflammation when mRNAs are more actively translated. Our findings reveal that differential regulation of mRNAs by Regnase-1 and Roquin depends on their translation status and enables elaborate control of inflammation.
Regnase-1 (also known as Zc3h12a and MCPIP1) is an RNase that destabilizes a set of mRNAs, including Il6 and Il12b, through cleavage of their 3' UTRs. Although Regnase-1 inactivation leads to development of an autoimmune disease characterized by T cell activation and hyperimmunoglobulinemia in mice, the mechanism of Regnase-1-mediated immune regulation has remained unclear. We show that Regnase-1 is essential for preventing aberrant effector CD4(+) T cell generation cell autonomously. Moreover, in T cells, Regnase-1 regulates the mRNAs of a set of genes, including c-Rel, Ox40, and Il2, through cleavage of their 3' UTRs. Interestingly, T cell receptor (TCR) stimulation leads to cleavage of Regnase-1 at R111 by Malt1/paracaspase, freeing T cells from Regnase-1-mediated suppression. Furthermore, Malt1 protease activity is critical for controlling the mRNA stability of T cell effector genes. Collectively, these results indicate that dynamic control of Regnase-1 expression in T cells is critical for controlling T cell activation.
Balanced production of type I interferons (IFN) and proinflammatory cytokines upon engagement of Toll-like receptors (TLRs), which signal via adaptors containing a Toll-IL-1-Receptor (TIR) domain, such as MyD88 and TRIF, has been proposed to control the pathogenesis of autoimmune disease and tumor responses to inflammation. Here we show that TRAF3, a ubiquitin ligase that interacts with both MyD88 and TRIF, differentially regulated production of IFN and proinflammatory cytokines. Degradative TRAF3 ubiquitination during MyD88-dependent TLR signaling was essential for activation of mitogen-activated protein kinases (MAPKs) and inflammatory cytokine production. By contrast, TRIF-dependent signaling triggered non-canonical TRAF3 self-ubiquitination that activated the IFN response. Inhibition of degradative TRAF3 ubiquitination prevented expression of all proinflammatory cytokines without impacting the IFN response.
Posttranscriptional regulation of IL-6 has been largely uncharacterized, with the exception of the ribonuclease Regnase-1, which prevents autoimmunity by destabilizing IL-6 mRNA. Here, we identified AT-rich interactive domain-containing protein 5A (Arid5a) as a unique RNA binding protein, which stabilizes IL-6 but not TNF-α mRNA through binding to the 3′ untranslated region of IL-6 mRNA. Arid5a was enhanced in macrophages in response to LPS, IL-1β, and IL-6. Arid5a deficiency inhibited elevation of IL-6 serum level in LPStreated mice and suppressed IL-6 levels and the development of T H 17 cells in experimental autoimmune encephalomyelitis. Importantly, Arid5a inhibited the destabilizing effect of Regnase-1 on IL-6 mRNA. These results indicate that Arid5a plays an important role in promotion of inflammatory processes and autoimmune diseases.immune regulation | RNA-protein complex
Transcription of inflammatory genes in innate immune cells is coordinately regulated by transcription factors, including NF-κB, and chromatin modifiers. However, it remains unclear how microbial sensing initiates chromatin remodeling. Here, we show that Akirin2, an evolutionarily conserved nuclear protein, bridges NF-κB and the chromatin remodeling SWI/SNF complex by interacting with BRG1-Associated Factor 60 (BAF60) proteins as well as IκB-ζ, which forms a complex with the NF-κB p50 subunit. These interactions are essential for Toll-like receptor-, RIG-I-, and Listeria-mediated expression of proinflammatory genes including Il6 and Il12b in macrophages. Consistently, effective clearance of Listeria infection required Akirin2. Furthermore, Akirin2 and IκB-ζ recruitment to the Il6 promoter depend upon the presence of IκB-ζ and Akirin2, respectively, for regulation of chromatin remodeling. BAF60 proteins were also essential for the induction of Il6 in response to LPS stimulation. Collectively, the IκB-ζ-Akirin2-BAF60 complex physically links the NF-κB and SWI/SNF complexes in innate immune cell activation. By recruiting SWI/SNF chromatin remodellers to IκB-ζ, transcriptional coactivator for NF-κB, the conserved nuclear protein Akirin2 stimulates pro-inflammatory gene promoters in mouse macrophages during innate immune responses to viral or bacterial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.