In order to develop a highly sensitive and high-throughput screening method for nitrogen monoxide metabolites in biological fluids, we have investigated the simultaneous determination of nitrite and nitrate, using capillary electrophoresis and microchip capillary electrophoresis. In capillary zone electrophoresis, a running buffer based on human serum components with high ionic strength has been developed for the determination of nitrite and nitrate in human serum and human saliva. We obtained successful separation of nitrite and nitrate in the serum and the saliva within 7 min under optimum analytical conditions. Linear calibration curves for nitrite and nitrate for both peak height and area were obtained by a standard addition method. The limits of detection obtained at a signal-to-noise ratio (S/N) of 3 for nitrite and nitrate in the serum were 2.6 and 1.5 microM, respectively. The values of the relative standard deviation of peak height for the serum with 9.2 microM nitrite and 20.9 microM nitrate were 5.7 and 4.1%, respectively. For on-site analysis with high-throughput screening, a microchip capillary electrophoresis method using a microchip made of quartz with a UV detector was developed. In this high-throughput format, using a running buffer with an electroosmotic flow modifier, the peaks of nitrite and nitrate in an artificial serum sample were obtained within 8 s. In high-resolution mode, using the buffer without electroosmotic flow modifier, the separation of nitrite and nitrate was obtained within 15 s. In high-resolution mode, using an artificial serum sample with 50 microM NO2- and 50 microM NO3-, the limits of detection (S/N = 3) of 41 microM for NO2- and 26 microM for NO3- were obtained. The method was applied to human serum and saliva. We obtained peaks due to nitrite and nitrate in 10-fold diluted saliva.
We describe a combination of selected ions as a terminating ion which is useful for transient isotachophoresis (ITP) in capillary zone electrophoresis (CZE) for the determination of nitrite and nitrate in seawater. In addition to 150 mM sulfate as the principal terminating ion, 10 mM bromate was added to a sample solution as the additional terminating ion. Artificial seawater containing 3 mM cetyltrimethylammonium chloride (CTAC) was adopted as a background electrolyte (BGE). The limits of detection (LODs) for nitrite and nitrate were 2.2 and 1.0 microg/L (as nitrogen), respectively. The LODs were obtained at a signal to noise ratio (S/N) of 3. The values of the relative standard deviation (RSD) of peak area for these ions were 1.9 and 1.4%. The RSDs of peak height were 1.7 and 1.9%, the RSDs of migration time 0.11%. The proposed method was applied to the determination of nitrite and nitrate in a proposed certified reference material for nutrients in seawater, MOOS-1, distributed by the National Research Council of Canada (NRC). The results almost agreed with the assigned tolerance interval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.