Effective low-energy Hamiltonians for several different families of iron-based superconductors are compared after deriving them from the downfolding scheme based on first-principles calculations. Systematic dependences of the derived model parameters on the families are elucidated, many of which are understood from the systematic variation of the covalency between Fe-3d and pnictogen-/chalcogenp orbitals. First, LaFePO, LaFeAsO (1111), BaFe 2 As 2 (122), LiFeAs (111), FeSe, and FeTe (11) have overall similar band structures near the Fermi level, where the total widths of 10-fold Fe-3d bands are mostly around 4.5 eV. However, the derived effective models of the 10-fold Fe-3d bands (d model) for FeSe and FeTe have substantially larger effective onsite Coulomb interactions U $ 4:2 and 3.4 eV, respectively, after the screening by electrons on other bands and after averaging over orbitals, as compared to $2:5 eV for LaFeAsO. The difference is similar in the effective models containing p orbitals of As, Se or Te (dp or dpp model), where U ranges from $4 eV for the 1111 family to $7 eV for the 11 family. The exchange interaction J has a similar tendency. The family dependence of models indicates a wide variation ranging from weak correlation regime (LaFePO) to substantially strong correlation regime (FeSe). The origin of the larger effective interaction in the 11 family is ascribed to smaller spread of the Wannier orbitals generating larger bare interaction, and to fewer screening channels by the other bands. This variation is primarily derived from the distance h between the pnictogen/chalcogen position and the Fe layer: The longer h for the 11 family generates more ionic character of the bonding between iron and anion atoms, while the shorter h for the 1111 family leads to more covalent-bonding character, the larger spread of the Wannier orbitals, and more efficient screening by the anion p orbitals. The screened interaction of the d model is strongly orbital dependent, which is also understood from the Wannier spread. The dp and dpp models show much weaker orbital dependence. The larger h also explains why the 10-fold 3d bands for the 11 family are more entangled with the smearing of the ''pseudogap'' structure above the Fermi level seen in the 1111 family. While the family-dependent semimetallic splitting of the bands primarily consists of d yz =d zx and d x 2 Ày 2 orbitals, the size of the pseudogap structure is controlled by the hybridization between these orbitals and d xy =d 3z 2 Àr 2 : A large hybridization in the 1111 family generates a large ''band-insulating''-like pseudogap (hybridization gap), whereas a large h in the 11 family weakens them, resulting in a ''half-filled'' like bands of orbitals. This may enhance strong correlation effects in analogy with Mott physics and causes the orbital selective crossover in the three orbitals. On the other hand, the geometrical frustration t 0 =t, inferred from the ratio of the next-nearest transfer t 0 to the nearest one t of the d model is relatively larger for the...
We calculate the electronic structure of Sr(2)RuO(4), treating correlations within dynamical mean-field theory. The approach successfully reproduces several experimental results and explains the key properties of this material: the anisotropic mass renormalization of quasiparticles and the crossover into an incoherent regime above a low temperature scale. While the orbital differentiation originates from the proximity of the van Hove singularity, strong correlations are caused by the Hund's coupling. The generality of this mechanism for other correlated materials is pointed out.
We present an approach that combines the local density approximation (LDA) and the dynamical mean-field theory (DMFT) in the framework of the full-potential linear augmented plane waves (FLAPW) method. Wannier-like functions for the correlated shell are constructed by projecting local orbitals onto a set of Bloch eigenstates located within a certain energy window. The screened Coulomb interaction and Hund's coupling are calculated from a first-principle constrained RPA scheme. We apply this LDA+DMFT implementation, in conjunction with a continuous-time quantum Monte-Carlo algorithm, to the study of electronic correlations in LaFeAsO. Our findings support the physical picture of a metal with intermediate correlations. The average value of the mass renormalization of the Fe 3d bands is about 1.6, in reasonable agreement with the picture inferred from photoemission experiments. The discrepancies between different LDA+DMFT calculations (all technically correct) which have been reported in the literature are shown to have two causes: i) the specific value of the interaction parameters used in these calculations and ii) the degree of localization of the Wannier orbitals chosen to represent the Fe 3d states, to which many-body terms are applied. The latter is a fundamental issue in the application of many-body calculations, such as DMFT, in a realistic setting. We provide strong evidence that the DMFT approximation is more accurate and more straightforward to implement when well-localized orbitals are constructed from a large energy window encompassing Fe-3d, As-4p and O-2p, and point out several difficulties associated with the use of extended Wannier functions associated with the low-energy iron bands. Some of these issues have important physical consequences, regarding in particular the sensitivity to the Hund's coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.