The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility , has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations . Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations . Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs) and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise-rather than conventional magnetic noise-as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.
Vacuum Rabi splitting is demonstrated in a GaAs double quantum dot system coupled with a coplanar waveguide resonator. The coupling strength g, the decoherence rate of the quantum dot γ, and the decay rate of the resonator κ are derived, assuring distinct vacuum Rabi oscillation in a strong coupling regime [(g,γ,κ)≈(30,25,8.0) MHz]. The magnitude of decoherence is consistently interpreted in terms of the coupling of electrons to piezoelectric acoustic phonons in GaAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.