The circadian system has endowed animals with the ability to anticipate recurring food availability at particular times of day. As daily food anticipation (FA) is independent of the suprachiasmatic nuclei, the central pacemaker of the circadian system, questions arise of where FA signals originate and what role components of the circadian clock might play. Here we show that liver-specific deletion of Per2 in mice abolishes FA, an effect that is rescued by viral overexpression of Per2 in the liver. RNA sequencing indicates that Per2 regulates β-hydroxybutyrate (βOHB) production to induce FA leading to the conclusion that liver Per2 is important for this process. Unexpectedly, we show that FA originates in the liver and not in the brain. However, manifestation of FA involves processing of the liver-derived βOHB signal in the brain, indicating that the food-entrainable oscillator is not located in a single tissue but is of systemic nature.
A critical issue in polymer-based solar cells (PSCs) is to improve the power conversion efficiency (PCE) as well as the stability. Here, we describe the development of new semiconducting polymers consisting of thiophene, thiazolothiazole and naphthobisthiadiazole in the polymer backbone. The polymers had good solubility and thus solution-processability, appropriate electronic structure with narrow band gaps of ~1.57 eV and low-lying HOMO energy levels of ~−5.40 eV, and highly ordered structure with the favorable face-on backbone orientation. Solar cells based on the polymers and PC71BM exhibited quite high PCEs of up to 9%. More interestingly, the cells also demonstrated excellent stability as they showed negligible degradation of PCE when stored at 85˚C for 500 hours in the dark under nitrogen atmosphere. These results indicate that the newly developed polymers are promising materials for PSCs in the practical use.
REV-ERBα (encoded by Nr1d1) is a nuclear receptor that is part of the circadian clock mechanism and regulates metabolism and inflammatory processes. The glucocorticoid receptor (GR, encoded by Nr3c1) influences similar processes, but is not part of the circadian clock, although glucocorticoid signaling affects resetting of the circadian clock in peripheral tissues. Because of their similar impact on physiological processes, we studied the interplay between these two nuclear receptors. We found that REV-ERBα binds to the C-terminal portion and GR to the N-terminal portion of HSP90α and HSP90β, a chaperone responsible for the activation of proteins to ensure survival of a cell. The presence of REV-ERBα influences the stability and nuclear localization of GR by an unknown mechanism, thereby affecting expression of GR target genes, such as IκBα (Nfkbia) and alcohol dehydrogenase 1 (Adh1). Our findings highlight an important interplay between two nuclear receptors that influence the transcriptional potential of each other. This indicates that the transcriptional landscape is strongly dependent on dynamic processes at the protein level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.