Advances in our understanding of the decomposition processes in forest ecosystems over the past three decades have demonstrated the importance of lignin as a regulating factor in the decomposition of leaf litter. Consequently, increasingly more attention is being focused on the ecology of fungi associated with lignin decomposition. The aim of this review is to provide a critical summary of the ecology of ligninolytic fungi inhabiting leaf litter and forest floor materials. The review focuses on the following aspects of ligninolytic fungi: the taxonomic and functional diversity of ligninolytic fungi, the outcomes of interactions between ligninolytic fungi and other organisms, the activity and abundance of ligninolytic fungi measured by the production of bleached leaves and humus, the activity of ligninolytic enzymes in soil environments, the substratum and seral succession, spatial and temporal patterns in both mycelial abundance and species distribution, and the effect of environmental factors such as nitrogen deposition and global environmental changes on ligninolytic fungi. This review integrates the ecology, diversity, and activity of ligninolytic fungi into the context of an ecosystem in order to provide an understanding of the roles of ligninolytic fungi in decomposition processes.
Theory suggests that biodiversity might help sustain multiple ecosystem functions. To evaluate possible biodiversity-multifunctionality relationships in a natural setting, we considered different spatial scales of diversity metrics for soil fungi in the northern forests of Japan. We found that multifunctionality increased with increasing local species richness, suggesting a limited degree of multifunctional redundancy. This diversity-multifunctionality relationship was independent of the compositional uniqueness of each community. However, we still found the importance of community composition, because there was a positive correlation between community dissimilarity and multifunctional dissimilarity across the landscape. This result suggests that functional redundancy can further decrease when spatial variations in identities of both species and functions are simultaneously considered at larger spatial scales. We speculate that different scales of diversity could provide multiple levels of insurance against the loss of functioning if high-levels of local species diversity and compositional variation across locations are both maintained. Alternatively, making species assemblages depauperate may result in the loss of multifunctionality.
The ecology of endophytic and epiphytic phyllosphere fungi of forest trees is reviewed with special emphasis on the development of decomposer fungal communities and decomposition processes of leaf litter. A total of 41 genera of phyllosphere fungi have been reported to occur on leaf litter of tree species in 19 genera. The relative proportion of phyllosphere fungi in decomposer fungal communities ranges from 2% to 100%. Phyllosphere fungi generally disappear in the early stages of decomposition, although a few species persist until the late stages. Phyllosphere fungi have the ability to utilize various organic compounds as carbon sources, and the marked decomposing ability is associated with ligninolytic activity. The role of phyllosphere fungi in the decomposition of soluble components during the early stages is relatively small in spite of their frequent occurrence. Recently, the roles of phyllosphere fungi in the decomposition of structural components have been documented with reference to lignin and cellulose decomposition, nutrient dynamics, and accumulation and decomposition of soil organic matter. It is clear from this review that several of the common phyllosphere fungi of forest trees are primarily saprobic, being specifically adapted to colonize and utilize dead host tissue, and that some phyllosphere fungi with marked abilities to decompose litter components play important roles in decomposition of structural components, nutrient dynamics, and soil organic matter accumulation.
Decomposition processes of beech leaf litter were studied over a 3‐year period in a cool temperate deciduous forest in Japan. Organic chemical and nutrient dynamics, fungal biomass and succession were followed on upper (Moder) and lower (Mull) of a forest slope. Litter decomposition rates were similar between the sites. Nutrient dynamics of the decomposing litter was categorized into two types: weight changes in nitrogen and phosphorus showed two phases, the immobilization (0–21 months) and the mobilization phase (21–35 months), while those in potassium, calcium and magnesium showed only the mobilization phase. The rate of loss of organic chemical constituents was lignin < holocellulose < soluble carbohydrate < polyphenol in order. The changes in lignocellulose index (LCI), the ratio of holocellulose in lignin and holocellulose, were significantly correlated to the changes in nitrogen and phosphorus concentrations during the decomposition. During the immobilization phase, increase in total fungal biomass contributed to the immobilization of nitrogen and phosphorus. The percentage of clamp‐bearing fungal biomass (biomass of the Basidiomycota) to total fungal biomass increased as the decomposition proceeded and was significantly correlated to LCI. Two species in the xylariaceous Ascomycota were dominantly isolated by the surface sterilization method from decomposing litter collected in the 11th month. The organic chemical, nitrogen and phosphorus dynamics during the decomposition were suggested to be related to the ingrowth, substrate utilization and succession of the Xylariaceae and the Basidiomycota. Twenty‐one species in the other Ascomycota and the Zygomycota isolated by the washing method were classified into three groups based on their occurrence patterns: primary saprophytes, litter inhabitants and secondary sugar fungi. These species showed different responses to LCI and soluble carbohydrate concentration of the litter between the groups.
Phyllosphere fungi occur on various litters, but the ecology of these fungi on leaf litter has received little attention. To investigate the occurrence, colonization, and succession of phyllosphere fungi on leaf litter of Fagus crenata Blume, fungi were isolated from living, senescent, freshly fallen, and decomposing leaves by surface sterilization and washing methods. A total of 18 and 47 fungal species were isolated from the interior and surface of living and senescent leaves, respectively, and 15 frequent species were regarded as phyllosphere fungi. These fungi were divided into three groups according to their frequency on freshly fallen and decomposing leaves. Nine species (Group I) occurred frequently on decomposing leaves, two species (Group II) on freshly fallen leaves only, and four species (Group III) were frequent on living or senescent leaves only. Colonization of sterilized, freshly fallen leaves by phyllosphere fungi was investigated to test their ability to infect litter directly after litter fall. Frequencies of four species were lower on sterilized leaves than on unsterilized leaves, whereas frequencies of other species did not differ between sterilized and unsterilized leaves. Successional trends of endophytes and epiphytes were observed during decomposition from freshly fallen to decomposing leaves. The sum of frequencies of endophytes decreased temporarily on freshly fallen leaves and increased on decomposing leaves. The sum of frequencies of epiphytes decreased from freshly fallen to decomposing leaves.Key words: beech, decomposition, endophyte, epiphyte, Xylariaceae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.