We have developed a new analysis method for obtaining the power spectrum in the horizontal phase velocity domain from airglow intensity image data to study atmospheric gravity waves. This method can deal with extensive amounts of imaging data obtained on different years and at various observation sites without bias caused by different event extraction criteria for the person processing the data. The new method was applied to sodium airglow data obtained in 2011 at Syowa Station (69°S, 40°E), Antarctica. The results were compared with those obtained from a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal characteristics, such as wavelengths, phase velocities, and wave periods. The horizontal phase velocity of each wave event in the airglow images corresponded closely to a peak in the spectrum. The statistical results of spectral analysis showed an eastward offset of the horizontal phase velocity distribution. This could be interpreted as the existence of wave sources around the stratospheric eastward jet. Similar zonal anisotropy was also seen in the horizontal phase velocity distribution of the gravity waves by the event analysis. Both methods produce similar statistical results about directionality of atmospheric gravity waves. Galactic contamination of the spectrum was examined by calculating the apparent velocity of the stars and found to be limited for phase speeds lower than 30 m/s. In conclusion, our new method is suitable for deriving the horizontal phase velocity characteristics of atmospheric gravity waves from an extensive amount of imaging data.
We analyzed the horizontal phase velocity of gravity waves and medium‐scale traveling ionospheric disturbances (MSTIDs) by using the three‐dimensional fast Fourier transform method developed by Matsuda et al. (2014) for 557.7 nm (altitude: 90–100 km) and 630.0 nm (altitude: 200–300 km) airglow images obtained at Shigaraki MU Observatory (34.8°N, 136.1°E, dip angle: 49°) over ∼16 years from 16 March 1999 to 20 February 2015. The analysis of 557.7 nm airglow images shows clear seasonal variation of the propagation direction of gravity waves in the mesopause region. In spring, summer, fall, and winter, the peak directions are northeastward, northeastward, northwestward, and southwestward, respectively. The difference in east‐west propagation direction between summer and winter is probably caused by the wind filtering effect due to the zonal mesospheric jet. Comparison with tropospheric reanalysis data shows that the difference in north‐south propagation direction between summer and winter is caused by differences in the latitudinal location of wave sources due to convective activity in the troposphere relative to Shigaraki. The analysis of 630.0 nm airglow images shows that the propagation direction of MSTIDs is mainly southwestward with a minor northeastward component throughout the 16 years. A clear negative correlation is seen between the yearly power spectral density of MSTIDs and F10.7 solar flux. This negative correlation with solar activity may be explained by the linear growth rate of the Perkins instability and secondary wave generation of gravity waves in the thermosphere.
We have obtained horizontal phase velocity distributions of the gravity waves around 90 km from four Antarctic airglow imagers, which belong to an international airglow imager/instrument network known as ANGWIN (Antarctic Gravity Wave Instrument Network). Results from the airglow imagers at Syowa (69°S, 40°E), Halley (76°S, 27°W), Davis (69°S, 78°E), and McMurdo (78°S, 167°E) were compared, using a new statistical analysis method based on 3‐D Fourier transform (Matsuda et al., 2014) for the observation period between 7 April and 21 May 2013. Significant day‐to‐day and site‐to‐site differences were found. The averaged phase velocity spectrum during the observation period showed preferential westward direction at Syowa, McMurdo, and Halley, but no preferential direction at Davis. Gravity wave energy estimated by I′/I was ~5 times larger at Davis and Syowa than at McMurdo and Halley. We also compared the phase velocity spectrum at Syowa and Davis with the background wind field and found that the directionality only over Syowa could be explained by critical level filtering of the waves. This suggests that the eastward propagating gravity waves over Davis could have been generated above the polar night jet. Comparison of nighttime variations of the phase velocity spectra with background wind measurements suggested that the effect of critical level filtering could not explain the temporal variation of gravity wave directionality well, and other reasons such as variation of wave sources should be taken into account. Directionality was determined to be dependent on the gravity wave periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.