GaAs-GaAsP and InGaAs-AlGaAs strained-layer superlattice photocathodes are presented as emission sources for highly polarized electron beams. The GaAs-GaAsP cathode achieved a maximum polarization of 92(±6)% with a quantum efficiency of 0.5%, while the InGaAs-AlGaAs cathode provides a higher quantum efficiency (0.7%) but a lower polarization (77(±5)%). Criteria for achieving high polarization using superlattice (SL) photocathodes are discussed based on experimental spin-resolved quantum efficiency spectra.
Using a newly developed transmission-type photocathode, an electron beam of super-high brightness [ð1:3 AE 0:5Þ Â 10 7 AÁcm À2 Ásr À1 ] was achieved. Moreover, the spin-polarization was as high as 90%. We fabricated a transmission-type photocathode based on a GaAs-GaAsP strained superlattice on a GaP substrate in order to enhance the brightness and polarization greatly. In this system, a laser beam is introduced through the transparent GaP substrate. The beam is focused on the superlattice active layer with a short focal length lens. Excited electrons are generated in a small area and extracted from the surface. The shrinkage of the electron generation area improved the brightness. In addition, a GaAs layer was inserted between the GaP substrate and the GaAsP buffer layer to control the strain relaxation process in the GaAsP buffer layer. This design for strain control was key in achieving high polarization (90%) in the transmission-type photocathode. #
Articles you may be interested in30-kV spin-polarized transmission electron microscope with GaAs-GaAsP strained superlattice photocathode Development of spin polarized electron photocathodes: GaAs-GaAsP superlattice and GaAs-AlGaAs superlattice with DBR AIP Conf.In order to produce a high brightness and high spin polarization electron beam, a pointlike emission mechanism is required for the photocathode of a GaAs polarized electron source. For this purpose, the laser spot size on the photocathode must be minimized, which is realized by changing the direction of the injection laser light from the front side to the back side of the photocathode. Based on this concept, a 20 kV gun was constructed with a transmission photocathode including an active layer of a GaAs-GaAsP superlattice layer. This system produces a laser spot diameter as small as 1.3 m for 760-810 nm laser wavelength. The brightness of the polarized electron beam was ϳ2.0ϫ 10 7 A cm −2 sr −1 , which corresponds to a reduced brightness of ϳ1.0ϫ 10 7 A m −2 sr −1 V −1 . The peak polarization of 77% was achieved up to now. A charge density lifetime of 1.8 ϫ 10 8 C cm −2 was observed for an extracted current of 3 A.
The dynamical theory for perfect crystals in the Laue case was reformulated using the Riemann surface, as used in complex analysis. In the two-beam approximation, each branch of the dispersion surface is specified by one sheet of the Riemann surface. The characteristic features of the dispersion surface are analytically revealed using four parameters, which are the real and imaginary parts of two quantities specifying the degree of departure from the exact Bragg condition and the reflection strength. By representing these parameters on complex planes, these characteristics can be graphically depicted on the Riemann surface. In the conventional case, the absorption is small and the real part of the reflection strength is large, so the formulation is the same as the traditional analysis. However, when the real part of the reflection strength is small or zero, the two branches of the dispersion surface cross, and the dispersion relationship becomes similar to that of the Bragg case. This is because the geometrical relationships among the parameters are similar in both cases. The present analytical method is generally applicable, irrespective of the magnitudes of the parameters. Furthermore, the present method analytically revealed many characteristic features of the dispersion surface and will be quite instructive for further numerical calculations of rocking curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.