Pharmacological mechanisms of gold-standard antipsychotics against treatment-refractory schizophrenia, such as clozapine (CLZ), remain unclear. We aimed to explore the mechanisms of CLZ by investigating the effects of MK801 and CLZ on tripartite synaptic transmission in the thalamocortical glutamatergic pathway using multi-probe microdialysis and primary cultured astrocytes. l-glutamate release in the medial prefrontal cortex (mPFC) was unaffected by local MK801 administration into mPFC but was enhanced in the mediodorsal thalamic nucleus (MDTN) and reticular thalamic nucleus (RTN) via GABAergic disinhibition in the RTN–MDTN pathway. The local administration of therapeutically relevant concentrations of CLZ into mPFC and MDTN increased and did not affect mPFC l-glutamate release. The local administration of the therapeutically relevant concentration of CLZ into mPFC reduced MK801-induced mPFC l-glutamate release via presynaptic group III metabotropic glutamate receptor (III-mGluR) activation. However, toxic concentrations of CLZ activated l-glutamate release associated with hemichannels. This study demonstrated that RTN is a candidate generator region in which impaired N-methyl-d-aspartate (NMDA)/glutamate receptors likely produce thalamocortical hyperglutamatergic transmission. Additionally, we identified several mechanisms of CLZ relating to its superiority in treatment-resistant schizophrenia and its severe adverse effects: (1) the prevention of thalamocortical hyperglutamatergic transmission via activation of mPFC presynaptic III-mGluR and (2) activation of astroglial l-glutamate release associated with hemichannels. These actions may contribute to the unique clinical profile of CLZ.
Background and Purpose: The mechanisms causing spontaneous epileptic seizures, including carbamazepine-resistant/zonisamide -sensitive seizures and comorbidity in autosomal dominant sleep-related hypermotor epilepsy (ADSHE) are unclear. This study investigated functional abnormalities in thalamocortical transmission in transgenic rats bearing rat S286L-mutant Chrna4 (S286L-TG) of α4 subunit of the nicotinic ACh receptor (nAChR) that corresponds to the human S284L-mutant CHRNA4.Experimental Approach: Effects of carbamazepine and zonisamide on epileptic discharges of S286L-TG rat were measured using telemetry electrocorticogram.Transmission abnormalities of L-glutamate and GABA in thalamocortical pathway of S286L-TG rats were investigated using multiprobe microdialysis and ultra-highperformance liquid-chromatography.Key Results: Epileptic discharges in S286L-TG rats were reduced by zonisamide but not by carbamazepine, similar to that of S284L-ADSHE patients. Carbamazepine unaffected functional abnormality in transmission of S286L-TG rats. However, zonisamide was able to compensate for the attenuated S286L-mutant nAChR induced GABA release in frontal-cortex, without affecting attenuated thalamocortical glutamatergic transmission. Excitatory effects of S286L-mutant nAChR on thalamocortical transmission were attenuated compared with those of wild-type nAChR. Loss-of-function of S286L-nAChR enhanced transmission in thalamocortical motor pathway by predominantly attenuating GABAergic transmission. However, it attenuated transmission in thalamocortical cognitive pathway by reducing inhibitory GABAergic and excitatory glutamatergic transmission. Conclusion and Implications:Our results suggest that functional abnormalities of S286L-nAChR are associated with intra-frontal and thalamocortical transmission, possibly contributing to the pathogenesis of ADSHE-seizure and comorbidity of S284L-ADSHE. Selective compensation of impaired GABAergic transmission by zonisamide (but not by carbamazepine) in frontal cortex may be involved, at least partially, in carbamazepine-resistant ADSHE-seizure of S284L-ADSHE patients. thalamic nucleus; SHE, sporadic form sleep-related hypermotor epilepsy; S286L-TG, transgenic rat bearing rat Chrna4 missense S286L mutation; ZNS, zonisamide.
Deficiencies in N‐methyl‐d‐aspartate (NMDA)/glutamate receptor (NMDAR) signaling have been considered central to the cognitive impairments of schizophrenia; however, an NMDAR antagonist memantine (MEM) improves cognitive impairments of Alzheimer's disease and schizophrenia. These mechanisms of paradoxical clinical effects of NMDAR antagonists remain unclear. To explore the mechanisms by which MK801 and MEM affect thalamocortical transmission, we determined interactions between local administrations of MK801, MEM, system xc− (Sxc), and metabotropic glutamate receptors (mGluRs) on extracellular glutamate and GABA levels in the mediodorsal thalamic nucleus (MDTN) and medial prefrontal cortex (mPFC) using dual‐probe microdialysis with ultra‐high‐pressure liquid chromatography. Effects of MK801 and MEM on Sxc activity were also determined using primary cultured astrocytes. Sxc activity was enhanced by MEM, but was unaffected by MK801. MK801 enhanced thalamocortical glutamatergic transmission by GABAergic disinhibition in the MDTN. In the MDTN and the mPFC, MEM weakly increased glutamate release by activating Sxc, whereas MEM inhibited thalamocortical glutamatergic transmission. Paradoxical effects of MEM were induced following secondary activation of inhibitory II‐mGluR and III‐mGluR by exporting glutamate from astroglial Sxc. The present results suggest that the effects of therapeutically relevant concentrations of MEM on thalamocortical glutamatergic transmission are predominantly caused by activation of Sxc rather than inhibition of NMDAR. These demonstrations suggest that the combination between reduced NMDAR and activated Sxc contribute to the neuroprotective effects of MEM. Furthermore, activation of Sxc may compensate for the cognitive impairments that are induced by hyperactivation of thalamocortical glutamatergic transmission following activation of Sxc/II‐mGluR in the MDTN and Sxc/II‐mGluR/III‐mGluR in the mPFC.
The dopaminergic terminal projecting from the VTA received inhibitory GABA-mediated NMDA/glutamatergic regulation, but not stimulatory AMPA/glutamatergic regulation. However, both dopaminergic and noradrenergic terminals from the LC received stimulatory AMPA/glutamatergic regulation from the MTN, but not inhibitory GABA-mediated NMDA/glutamatergic regulation. These findings correlating neuronal activities in nuclei with neurotransmitter release suggested that the effects of QTP on neurotransmission in the mPFC depend on activated neuronal projections located outside the mPFC. Furthermore, positive interaction between LC and MTN afferents are potentially important in the pharmacological mechanisms of neurotransmitter regulation by QTP and hint at mechanisms underlying the atypical profile of this drug for treatment of schizophrenia and as a mood stabilizer and proconvulsive agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.