We report the chain conformations of polymer molecules accommodated at the solid-polymer melt interfaces in equilibrium. Polystyrene "Guiselin" brushes (adsorbed layers) with different molecular weights were prepared on Si substrates and characterized by using x-ray and neutron reflectivity. The results are intriguing to show that the adsorbed layers are composed of the two different nanoarchitectures: flattened chains that constitute the inner higher density region of the adsorbed layers and loosely adsorbed polymer chains that form the outer bulklike density region. In addition, we found that the lone flattened chains, which are uncovered by the additional prolonged solvent leaching (∼120 days), are reversibly densified with increasing temperature up to 150 °C. By generalizing the chain conformations of bulks, we postulate that the change in probabilities of the local chain conformations (i.e., trans and gauche states) of polymer molecules is the origin of this densification process.
We report an experimental study on shape deformations of ternary vesicles undergoing phase separation under an osmotic pressure difference. The phase separation on various shape vesicles causes unique shape-deformation branches. In the domain coarsening stage, prolate, discocyte, and starfish vesicles show a shape convergence to discocytes, whereas a pearling instability is observed in tube vesicles. In late stages, the domains start to bud towards the inside or outside of the vesicle depending on the excess area. We discuss the deformation branches based on the membrane elasticity model.
Alzheimer's disease (AD) is characterized by the accumulation of fibrillar amyloid-beta (Abeta) peptides to form amyloid plaques. Understanding the balance of production and clearance of Abeta peptides is the key to elucidating amyloid plaque homeostasis. Microglia in the brain, associated with senile plaques, are likely to play a major role in maintaining this balance. Here, we show that heat-shock proteins (HSPs), such as HSP90, HSP70, and HSP32, induce the production of interleukin 6 and tumor necrosis factor alpha and increase the phagocytosis and clearance of Abeta peptides. This suggests that microglial interaction with Abeta peptides is highly regulated by HSPs. The mechanism of microglial activation by exogenous HSPs involves the nuclear factor kB and p38 mitogen-activated protein kinase pathways mediated by Toll-like receptor 4 activation. In AD brains, levels of HSP90 were increased in both the cytosolic and membranous fractions, and HSP90 was colocalized with amyloid plaques. These observations suggest that HSP-induced microglial activation may serve a neuroprotective role by facilitating Abeta clearance and cytokine production
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopaminergic neurons in the nigrostriatal pathway. Previous studies have demonstrated that chronic systemic exposure of Lewis rats to rotenone produced many features of PD, and cerebral tauopathy was also detected in the case of severe weight loss. The present study was designed to assess the neurotoxicity of rotenone after daily oral administration for 28 days at several doses in C57BL/6 mice. In addition, we examined the protective effects of 4-phenylbutyrate (4-PBA) on nigral dopamine (DA) neurons in rotenone-treated mice. 4-PBA was injected intraperitoneally daily 30 min before each oral administration of rotenone. Chronic oral administration of rotenone at high doses induced specific nigrostriatal DA neurodegeneration, motor deficits and the up-regulation of a-synuclein in the surviving DA neurons. In contrast to the Lewis rat model, cerebral tauopathy was not detected in this mouse model. 4-PBA inhibited rotenone-induced neuronal death and decreased the protein level of a-synuclein. These results suggest that this rotenone mouse model may be useful for understanding the mechanism of DA neurodegeneration in PD, and that 4-PBA has a neuroprotective effect in the treatment of PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.