Genes located in chromosomal regions near telomeres are transcriptionally silent, whereas those located in regions away from telomeres are not. Here we show that there is a gradient of acetylation of histone H4 at lysine 16 (H4-Lys16) along a yeast chromosome; this gradient ranges from a hypoacetylated state in regions near the telomere to a hyperacetylated state in more distant regions. The hyperacetylation is regulated by Sas2p, a member of the MYST-type family of histone acetylases, whereas hypoacetylation is under the control of Sir2p, a histone deacetylase. Loss of hyperacetylation is accompanied by an increase in localization of the telomere protein Sir3p and the inactivation of gene expression in telomere-distal regions. Thus, the Sas2p and Sir2p function in concert to regulate transcription in yeast, by acetylating and deacetylating H4-Lys16 in a mechanism that may be common to all eukaryotes.
CLOCK is a positive component of a transcription/ translation-based negative feedback loop of the central circadian oscillator in the suprachiasmatic nucleus in mammals. To examine CLOCK-regulated circadian transcription in peripheral tissues, we performed microarray analyses using liver RNA isolated from Clock mutant mice. We also compared expression profiles with those of Cryptochromes (Cry1 and Cry2) double knockout mice. We identified more than 100 genes that fluctuated from day to night and of which expression levels were decreased in Clock mutant mice. In Cry-deficient mice, the expression levels of most CLOCK-regulated genes were elevated to the upper range of normal oscillation. Most of the screened genes had a CLOCK/BMAL1 binding site (E box) in the 5-flanking region. We found that CLOCK was absolutely concerned with the circadian transcription of one type of liver genes (such as DBP, TEF, and Usp2) and partially with another (such as mPer1, mPer2, mDec1, Nocturnin, P450 oxidoreductase, and FKBP51) because the latter were damped but remained rhythmic in the mutant mice. Our results showed that CLOCK and CRY proteins are involved in the transcriptional regulation of many circadian output genes in the mouse liver. In addition to being a core component of the negative feedback loop that drives the circadian oscillator, CLOCK also appears to be involved in various physiological functions such as cell cycle, lipid metabolism, immune functions, and proteolysis in peripheral tissues.
Eukaryotic cells restrict protein synthesis under various stress conditions, by inhibiting the eukaryotic translation initiation factor 2B (eIF2B). eIF2B is the guanine nucleotide exchange factor for eIF2, a heterotrimeric G protein consisting of α-, β- and γ-subunits. eIF2B exchanges GDP for GTP on the γ-subunit of eIF2 (eIF2γ), and is inhibited by stress-induced phosphorylation of eIF2α. eIF2B is a heterodecameric complex of two copies each of the α-, β-, γ-, δ- and ε-subunits; its α-, β- and δ-subunits constitute the regulatory subcomplex, while the γ- and ε-subunits form the catalytic subcomplex. The three-dimensional structure of the entire eIF2B complex has not been determined. Here we present the crystal structure of Schizosaccharomyces pombe eIF2B with an unprecedented subunit arrangement, in which the α2β2δ2 hexameric regulatory subcomplex binds two γε dimeric catalytic subcomplexes on its opposite sides. A structure-based in vitro analysis by a surface-scanning site-directed photo-cross-linking method identified the eIF2α-binding and eIF2γ-binding interfaces, located far apart on the regulatory and catalytic subcomplexes, respectively. The eIF2γ-binding interface is located close to the conserved 'NF motif', which is important for nucleotide exchange. A structural model was constructed for the complex of eIF2B with phosphorylated eIF2α, which binds to eIF2B more strongly than the unphosphorylated form. These results indicate that the eIF2α phosphorylation generates the 'nonproductive' eIF2-eIF2B complex, which prevents nucleotide exchange on eIF2γ, and thus provide a structural framework for the eIF2B-mediated mechanism of stress-induced translational control.
The core histones are essential components of the nucleosome that act as global negative regulators of DNA-mediated reactions including transcription, DNA replication and DNA repair. Modified residues in the N-terminal tails are well characterized in transcription, but not in DNA replication and DNA repair. In addition, roles of residues in the core globular domains are not yet well characterized in any DNA-mediated reactions. To comprehensively understand the functional surface(s) of a core histone, we constructed 320 yeast mutant strains, each of which has a point mutation in a core histone, and identified 42 residues responsible for the suppressor of Ty (Spt -) phenotypes, and 8, 30 and 61 residues for sensitivities to 6-azauracil (6AU), hydroxyurea (HU) and methyl-methanesulfonate (MMS), respectively. In addition to residues that affect one specific assay, residues involved in multiple reactions were found, and surprisingly, about half of them were clustered at either the nucleosome entry site, the surface required for nucleosome-nucleosome interactions in crystal packing or their surroundings. This comprehensive mutation approach was proved to be powerful for identification of the functional surfaces of a core histone in a variety of DNA-mediated reactions and could be an effective strategy for characterizing other evolutionarily conserved hub-like factors for which surface structural information is available.
Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.