The mechanisms of neuronal injury after hypoxia–ischemia (HI) are different in the immature and the adult brain, but microglia activation has not been compared. The purpose of this study was to phenotype resident microglia and blood‐derived macrophages in the hippocampus after HI in neonatal (postnatal day 9, P9) or adult (3 months of age, 3mo) mice. Unilateral brain injury after HI was induced in Cx3cr1GFP/+Ccr2RFP/+ male mice on P9 (n = 34) or at 3mo (n = 53) using the Vannucci model. Resident microglia (Cx3cr1‐GFP+) proliferated and were activated earlier after HI in the P9 (1–3 days) than that in the 3mo hippocampus, but remained longer in the adult brain (3–7 days). Blood‐derived macrophages (Ccr2‐RFP+) peaked 3 days after HI in both immature (P9) and adult (3mo) hippocampi but were twice as frequent in adult brains, 41% vs. 21% of all microglia/macrophages. CCL2 expression was three times higher in the P9 hippocampi, indicating that the proinflammatory response was more pronounced in the immature brain after HI. This corresponded well with the higher numbers of galectin‐3‐positive resident microglia in the P9 hippocampi, but did not correlate with CD16/32‐ or CD206‐positive resident microglia or blood‐derived macrophages. In conclusion, resident microglia, rather than infiltrating blood‐derived macrophages, proliferate and are activated earlier in the immature than in the adult brain, but remain increased longer in the adult brain. The inflammatory response is more pronounced in the immature brain, and this correlate well with galectin‐3 expression in resident microglia. GLIA 2015;63:2220–2230
The relative contribution of resident microglia and peripheral monocyte-derived macrophages in neuroinflammation after cranial irradiation is not known. A single dose of 8 Gy was administered to postnatal day 10 (juvenile) or 90 (adult) CX3CR1GFP/+ CCR2RFP/+ mouse brains. Microglia accumulated in the subgranular zone of the hippocampal granule cell layer, where progenitor cell death was prominent. The peak was earlier (6 h vs. 24 h) but less pronounced in adult brains. The increase in juvenile, but not adult, brains was partly attributed to proliferation. Microglia numbers then decreased over time to 39% (juvenile) and 58% (adult) of controls 30 days after irradiation, largely as a result of cell death. CD68 was expressed in 90% of amoeboid microglia in juvenile hippocampi but only in 9% of adult ones. Isolated hippocampal microglia revealed reduced CD206 and increased IL1-beta expression after irradiation, more pronounced in juvenile brains. CCL2 and IL-1 beta increased after irradiation, more in juvenile hippocampi, and remained elevated at all time points. In summary, microglia activation after irradiation was more pronounced, protracted and pro-inflammatory by nature in juvenile than in adult hippocampi. Common to both ages was long-lasting inflammation and the absence of monocyte-derived macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.