This paper proposes a novel approach named AGM to efficiently mine the association rules among the frequently appearing substructures in a given graph data set. A graph transaction is represented by an adjacency matrix, and the frequent patterns appearing in the matrices are mined through the extended algorithm of the basket analysis. Its performance has been evaluated for the artificial simulation data and the carcinogenesis data of Oxford University and NTP. Its high efficiency has been confirmed for the size of a real-world problem.. . .
The need for mining structured data has increased in the past few years. One of the best studied data structures in computer science and discrete mathematics are graphs. It can therefore be no surprise that graph based data mining has become quite popular in the last few years.This article introduces the theoretical basis of graph based data mining and surveys the state of the art of graph-based data mining. Brief descriptions of some representative approaches are provided as well.
High-throughput, high-accuracy detection of emerging viruses allows for the control of disease outbreaks. Currently, reverse transcription-polymerase chain reaction (RT-PCR) is currently the most-widely used technology to diagnose the presence of SARS-CoV-2. However, RT-PCR requires the extraction of viral RNA from clinical specimens to obtain high sensitivity. Here, we report a method for detecting novel coronaviruses with high sensitivity by using nanopores together with artificial intelligence, a relatively simple procedure that does not require RNA extraction. Our final platform, which we call the artificially intelligent nanopore, consists of machine learning software on a server, a portable high-speed and high-precision current measuring instrument, and scalable, cost-effective semiconducting nanopore modules. We show that artificially intelligent nanopores are successful in accurately identifying four types of coronaviruses similar in size, HCoV-229E, SARS-CoV, MERS-CoV, and SARS-CoV-2. Detection of SARS-CoV-2 in saliva specimen is achieved with a sensitivity of 90% and specificity of 96% with a 5-minute measurement.
Immunosensing is a bioanalytical technique capable of selective detections of pathogens by utilizing highly specific and strong intermolecular interactions between recognition probes and antigens. Here, we exploited the molecular mechanism in artificial nanopores for selective single-virus identifications. We designed hemagglutinin antibody mimicking oligopeptides with a weak affinity to influenza A virus. By functionalizing the pore wall surface with the synthetic peptides, we rendered specificity to virion−nanopore interactions. The ligand binding thereof was found to perturb translocation dynamics of specific viruses in the nanochannel, which facilitated digital typing of influenza by the resistive pulse bluntness. As amino acid sequence degrees of freedom can potentially offer variety of recognition ability to the molecular probes, this peptide nanopore approach can be used as a versatile immunosensor with single-particle sensitivity that promises wide applications in bioanalysis including bacterial and viral screening to infectious disease diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.