There has been an increasing interest in mobile manipulators that are capable of performing physical work in living spaces worldwide, corresponding to an aging population with declining birth rates with the expectation of improving quality of life (QoL). We assume that overall research and development will accelerate by using a common robot platform among a lot of researchers since that enables them to share their research results. Therefore we have developed a compact and safe research platform, Human Support Robot (HSR), which can be operated in an actual home environment and we have provided it to various research institutes to establish the developers community. Currently, the number of HSR users is expanding to 44 sites in 12 countries worldwide (as of November 30th, 2018). To activate the community, we assume that the robot competition will be effective. As a result of international public offering, HSR has been adopted as a standard platform for international robot competitions such as RoboCup@Home and World Robot Summit (WRS). HSR is provided to participants of those competitions. In this paper, we describe HSR's development background since 2006, and technical detail of hardware design and software architecture. Specifically, we describe its omnidirectional mobile base using the dual-wheel caster-drive mechanism, which is the basis of HSR's operational movement and a novel whole body motion control system. Finally, we describe the verification of autonomous task capability and the results of utilization in RoboCup@Home in order to demonstrate the effect of introducing the platform.
Background Fine-scale data on animal position are increasingly enabling us to understand the details of animal movement ecology and dead-reckoning, a technique integrating motion sensor-derived information on heading and speed, can be used to reconstruct fine-scale movement paths at sub-second resolution, irrespective of the environment. On its own however, the dead-reckoning process is prone to cumulative errors, so that position estimates quickly become uncoupled from true location. Periodic ground-truthing with aligned location data (e.g., from global positioning technology) can correct for this drift between Verified Positions (VPs). Yet relatively few bio-logging studies have adopted this approach due to an apparent inaccessibility of the complex analytical processes involved. We present step-by-step instructions for implementing Verified Position Correction (VPC) dead-reckoning in R using the tilt-compensated compass method, accompanied by the mathematical protocols underlying the code and improvements and extensions of this technique to reduce the trade-off between VPC rate and dead-reckoning accuracy. These protocols are all built into a user-friendly, fully-annotated VPC dead-reckoning R function; Gundog.Tracks, with multi-functionality to reconstruct animal movement paths across terrestrial, aquatic, and aerial systems, provided within the supplementary information as well as online (GitHub). Results The Gundog.Tracks function is demonstrated on three contrasting model species (the African lion Panthera leo, the Magellanic penguin Spheniscus magellanicus, and the Imperial cormorant Leucocarbo atriceps) moving on land, in water and in air, respectively. We show the effect of uncorrected errors in speed estimations, heading inaccuracies and infrequent VPC rate and demonstrate how these issues can be addressed. Conclusions The function provided will allow anyone familiar with R to dead-reckon animal tracks readily and accurately, as the key complex issues are dealt with by Gundog.Tracks. This will help the community to consider and implement a valuable, but often overlooked method of reconstructing high-resolution animal movement paths across diverse species and systems without requiring a bespoke application.
Recently, we established a collagen-binding growth factor consisting of epidermal growth factor and the fibronectin collagen-binding domain (FNCBD-EGF). FNCBD-EGF is a biologically active fusion protein that could stably bind to collagen materials, and exert its growth factor activity even after collagen binding. In this study, we investigated the concept that FNCBD moiety with high collagen affinity may enhance the effective local concentration of EGF at the site of administration in the following tissues: skin wounds, catheter-injured arteries, and hind limb muscles. In an animal model of impaired wound healing, application of FNCBD-EGF in combination with collagen gel induced granulation tissue formation in the wounds due to its sustained retention. In the injured artery, infused FNCBD-EGF remained bound to collagen exposed on the injured tissues even after blood circulation was restored. Injection of the fusion protein into the hind limbs revealed that our delivery system was effective for direct administration to muscular tissue.
Heterocapsa circularisquama is the most noxious dinoflagellate to bivalves such as oysters, short-necked clams and pearl oysters because its red tides have caused major mass mortalities. In order to reduce the negative impacts of H. circularisquama, predictions of red tide occurrences are essential, and hence it is important to grasp its population dynamics. The population dynamics of H. circularisquama, however, have not yet been clarified throughout the year. To precisely monitor population dynamics, the fluorescent antibody technique is effective. We here report on H. circularisquama population dynamics monitored with the indirect fluorescent antibody technique (IFAT) using monoclonal antibodies. Samplings were carried out once a week in summer and twice a month in other seasons at 4 points in Ago Bay, Mie Prefecture, Japan, from April 2001 to March 2005. Direct counting of the cells was also performed using a normal optical microscope. Vegetative cells of H. circularisquama monitored with IFAT were generally detected from late spring (May) to late autumn, and the cell density increased (maximum 2.33ϫ10 6 cells L Ϫ1) during summer. The lowest detection level was 1.33 cells L Ϫ1 with IFAT. In contrast, monitoring by counting with a common optical microscope often failed to detect H. circularisquama cells even at a density of 10 3 cells L Ϫ1 or more. Water temperature was significantly correlated to the abundances of H. circularisquama, and the cells were almost always observed at a temperature of 25°C or higher (summer season), and never detected at 10°C or lower (winter and early spring) in Ago Bay. In the waters of the bottom layer, H. circularisquama cells tended to be more abundant with lower dissolved oxygen (DO) values during summer. Thus, the seasonal distribution of H. circularisquama was clarified almost perfectly together with environmental factors in Ago Bay between spring and early winter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.