Work-related musculoskeletal disorders are the most frequent health issues, with awkward posture being one of the risk factors. Observational methods are often used in the manufacturing industry to analyze work postures in production fields. In this study, we present a straightforward technique for evaluating work postures utilizing the Ovako working posture analysis system (OWAS). The proposed technique calculates OWAS-based posture codes by manually acquiring employees' two-dimensional (2D) joint coordinates on the work image and inputting these coordinates into advanced machine learning models. Experiments were conducted to extract three-dimensional (3D) joint coordinates in the global coordinate system in the OWAS-based postures to develop machine learning models. Furthermore, the resulting 3D coordinates were converted to 2D joint coordinates in the camera image coordinate system using the direct linear transformation (DLT) method. The 2D joint coordinates and accompanying OWAS posture codes were utilized as training data to build machine learning models using the support vector machine algorithm. Cross validation confirmed the agreement rate of the OWAS action category (AC) by more than 80%, according to the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.