[1] Considerable uncertainties remain in the global pattern of diurnal variation in stratospheric ozone, particularly lower to middle stratospheric ozone, which is the principal contributor to total column ozone. The Superconducting Submillimeter-Wave LimbEmission Sounder (SMILES) attached to the Japanese Experiment Module (JEM) on board the International Space Station (ISS) was developed to gather high-quality global measurements of stratospheric ozone at various local times, with the aid of superconducting mixers cooled to 4K by a compact mechanical cooler. Using the SMILES dataset, as well as data from nudged chemistry-climate models (MIROC3.2-CTM and SD-WACCM), we show that the SMILES observational data have revealed the global pattern of diurnal ozone variations throughout the stratosphere. We also found that these variations can be explained by both photochemistry and dynamics. The peak-to-peak difference in the stratospheric ozone mixing ratio (total column ozone) reached 8% (1%) over the course of a day. This variation needs to be considered when merging ozone data from different satellite measurements and even from measurements made using one specific instrument at different local times.
Abstract. There is presently renewed interest in diurnal variations of stratospheric and mesospheric ozone for the purpose of supporting homogenization of records of various ozone measurements that are limited by the technique employed to being made at certain times of day. We have made such measurements for 19 years using a passive microwave remote sensing technique at the Mauna Loa Observatory (MLO) in Hawaii, which is a primary station in the Network for Detection of Atmospheric Composition Change (NDACC). We have recently reprocessed these data with hourly time resolution to study diurnal variations. We inspected differences between pairs of the ozone spectra (e.g., day and night) from which the ozone profiles are derived to determine the extent to which they may be contaminated by diurnally varying systematic instrumental or measurement effects. These are small, and we have reduced them further by selecting data that meet certain criteria that we established. We have calculated differences between profiles measured at different times: morning-night, afternoon-night, and morning-afternoon and have intercompared these with like profiles derived from the Aura Microwave Limb Sounder (Aura-MLS), the Upper Atmosphere Research Satellite Microwave Limb Sounder (UARS-MLS), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES), and Solar Backscatter Ultraviolet version 2 (SBUV/2) measurements. Differences between averages of coincident profiles are typically < 1.5 % of typical nighttime values over most of the covered altitude range with some exceptions. We calculated averages of ozone values for each hour from the Mauna Loa microwave data, and normalized these to the average for the first hour after midnight for comparison with corresponding values calculated with the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). We found that the measurements and model output mostly agree to better than 1.5 % of the midnight value, with one noteworthy exception: The measured morning-night values are significantly (2-3 %) higher than the modeled ones from 3.2 to 1.8 hPa (∼ 39-43 km), and there is evidence that the measured values are increasing compared to the modeled values before sunrise in this region.
We compare and examine diurnal temperature tides including their migrating component (DW1) from the troposphere to the lower mesosphere, using data from Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) and from six different reanalysis data sets: (1) the Modern Era Retrospective analysis for Research and Applications (MERRA), (2) the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) (3) the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), (4) the Japanese 25-year reanalysis by Japanese Meteorological Agency (JMA) and the Central Research Institute of Electric Power Industry (CRIEPI) (JRA25), (5) the NCEP/National Center for Atmospheric Research reanalysis (NCEP1), and (6) the NCEP and Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) reanalysis data (NCEP2). The horizontal and vertical structures of the diurnal tides in SABER and reanalyses reasonably agree, although the amplitudes are up to 30-50% smaller in the reanalyses than in the SABER in the upper stratosphere to lower mesosphere. Of all tidal components, the DW1 is dominant while a clear eastward propagating zonal wave number 3 component (DE3) is observed at midlatitudes of the Southern Hemisphere in winter. Among the six reanalyses, MERRA, ERA-Interim and CFSR are better at reproducing realistic diurnal tides. It is found that the diurnal tides extracted from SABER data in the winter-hemisphere stratosphere suffer from sampling issues that are caused by short-term variations of the background temperature. In addition, the GSWM underestimates the amplitude in the midlatitude upper stratosphere by about 50%
A polarization lidar was continuously operated aboard the research vessel Mirai in the tropical western Pacific over three northern winters: at 2.0°N, 138.0°E during November and December 2001; at 2.0°N, 138.5°E during November and December 2002; and at 7.5°N, 134.0°E during December 2004 and January 2005. Intensive radiosonde soundings were made from the vessel at 3‐h intervals during all three campaigns. The mechanisms that underlie the observed variations in cirrus in the tropical tropopause layer (TTL) are discussed from the viewpoint of large‐scale dynamics and transport. During the 2001 campaign, the tropopause region was cold, but the TTL was often clear, with only some subvisual cirrus. Potential vorticity data and trajectories show that the TTL during this period was strongly affected by dry air transport from the northern midlatitude lower stratosphere. During the 2002 campaign, a packet of large‐amplitude equatorial Kelvin waves was the primary control on the generation and disappearance of cirrus in the TTL. During the 2004–2005 campaign, a cold phase of large‐scale waves resulted in cirrus generation in the TTL in late December of 2004, similar to that observed during the 2002 campaign. Outflow from the South Pacific Convergence Zone (SPCZ) caused optically thick cirrus in the TTL, particularly during early January 2005, when we also observed regular diurnal variations in cirrus development within the TTL, that is, apparent sedimentation during the nighttime. We investigated two possible controlling processes, namely, horizontal advection together with diurnal variations in convective activity within the SPCZ and diurnal variations in local temperature due to tides and gravity waves. In the equatorial western Pacific, equatorial Kelvin waves are the important dynamical process that controls cirrus variations in the TTL. Dry‐air horizontal transport from the midlatitude lower stratosphere and wet‐air vertical transport near the tropical convergence regions should also be considered in fully explaining the cirrus observations in the TTL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.