Strigolactones (SLs) are carotenoid-derived phytohormones and rhizosphere signaling molecules for arbuscular mycorrhizal fungi and root parasitic weeds. Why and how plants produce diverse SLs are unknown. Here, cytochrome P450 CYP722C is identified as a key enzyme that catalyzes the reaction of BC-ring closure leading to orobanchol, the most prevalent canonical SL. The direct conversion of carlactonoic acid to orobanchol without passing through 4-deoxyorobanchol is catalyzed by the recombinant enzyme. By knocking out the gene in tomato plants, orobanchol was undetectable in the root exudates, whereas the architecture of the knockout and wild-type plants was comparable. These findings add to our understanding of the function of the diverse SLs in plants and suggest the potential of these compounds to generate crops with greater resistance to infection by noxious root parasitic weeds.
Strigolactones, a novel class of phytohormones, regulate plant architecture and act as rhizosphere signals. Species-specific biosynthetic pathways convert a common precursor, carlactone, to strigolactones.
HighlightPlanteose metabolism was uncovered as a key metabolic pathway for germination of Orobanche minor. Inhibition of planteose metabolism by nojirimycin resulted in selective inhibition of O. minor germination.
Strigolactones (SLs), first identified as germination stimulants for root parasitic weeds, act as endogenous phytohormones regulating shoot branching and as root-derived signal molecules mediating symbiotic communications in the rhizosphere. Canonical SLs typically have an ABCD ring system and can be classified into orobanchol- and strigol-type based on the C-ring stereochemistry. Their simplest structures are 4-deoxyorobanchol (4DO) and 5-deoxystrigol (5DS), respectively. Diverse canonical SLs are chemically modified with one or more hydroxy or acetoxy groups introduced into the A- and/or B-ring of these simplest structures, but the biochemical mechanisms behind this structural diversity remain largely unexplored. Sorgomol in sorghum (Sorghum bicolor [L.] Moench) is a strigol-type SL with a hydroxy group at C-9 of 5DS. In this study, we characterized sorgomol synthase. Microsomal fractions prepared from a high-sorgomol-producing cultivar of sorghum, Sudax, were shown to convert 5DS to sorgomol. A comparative transcriptome analysis identified SbCYP728B subfamily as candidate genes encoding sorgomol synthase. Recombinant SbCYP728B35 catalyzed the conversion of 5DS to sorgomol in vitro. Substrate specificity revealed that the C-8bS configuration in the C-ring of 5DS stereoisomers was essential for this reaction. The overexpression of SbCYP728B35 in Lotus japonicus hairy roots, which produce 5DS as an endogenous SL, also resulted in the conversion of 5DS to sorgomol. Furthermore, SbCYP728B35 expression was not detected in nonsorgomol-producing cultivar, Abu70, suggesting that this gene is responsible for sorgomol production in sorghum. Identification of the mechanism modifying parental 5DS of strigol-type SLs provides insights on how plants biosynthesize diverse SLs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.