Drug-likeness quantification is useful for screening drug candidates. Quantitative estimates of drug-likeness (QED) are commonly used to assess quantitative drug efficacy but are not suitable for screening compounds targeting protein-protein interactions (PPIs), which have recently gained attention. Therefore, we developed a quantitative estimate index for compounds targeting PPIs (QEPPI), specifically for early-stage screening of PPI-targeting compounds. QEPPI is an extension of the QED method for PPI-targeting drugs that models physicochemical properties based on the information available for drugs/compounds, specifically those reported to act on PPIs. FDA-approved drugs and compounds in iPPI-DB, which comprise PPI inhibitors and stabilizers, were evaluated using QEPPI. The results showed that QEPPI is more suitable than QED for early screening of PPI-targeting compounds. QEPPI was also considered an extended concept of the ‘‘Rule-of-Four’’ (RO4), a PPI inhibitor index. We evaluated the discriminatory performance of QEPPI and RO4 for datasets of PPI-target compounds and FDA-approved drugs using F-score and other indices. The F-scores of RO4 and QEPPI were 0.451 and 0.501, respectively. QEPPI showed better performance and enabled quantification of drug-likeness for early-stage PPI drug discovery. Hence, it can be used as an initial filter to efficiently screen PPI-targeting compounds.
New protein–protein interactions (PPIs) are identified, but PPIs have different physicochemical properties compared with conventional targets, making it difficult to use small molecules. Peptides offer a new modality to target PPIs, but designing appropriate peptide sequences by computation is challenging. Recently, AlphaFold and RoseTTAFold have made it possible to predict protein structures from amino acid sequences with ultra-high accuracy, enabling de novo protein design. We designed peptides likely to have PPI as the target protein using the “binder hallucination” protocol of AfDesign, a de novo protein design method using AlphaFold. However, the solubility of the peptides tended to be low. Therefore, we designed a solubility loss function using solubility indices for amino acids and developed a solubility-aware AfDesign binder hallucination protocol. The peptide solubility in sequences designed using the new protocol increased with the weight of the solubility loss function; moreover, they captured the characteristics of the solubility indices. Moreover, the new protocol sequences tended to have higher affinity than random or single residue substitution sequences when evaluated by docking binding affinity. Our approach shows that it is possible to design peptide sequences that can bind to the interface of PPI while controlling solubility.
The quantification of drug-likeness is very useful for screening drug candidates. The quantitative estimate of druglikeness (QED) is the most commonly used quantitative drug efficacy assessment method proposed by Bickerton et al. However, QED is not considered suitable for screening compounds that target protein-protein interactions (PPI), which have garnered significant interest in recent years. Therefore, we developed a method called the quantitative estimate of protein-protein interaction targeting drug-likeness (QEPPI), specifically for earlystage screening of PPI-targeting compounds. QEPPI is an extension of the QED method for PPI-targeting drugs and developed using the QED concept, involving modeling physicochemical properties based on the information available on the drug. QEPPI models the physicochemical properties of compounds that have been reported in the literature to act on PPIs. Compounds in iPPI-DB, which comprises PPI inhibitors and stabilizers, and FDA-approved drugs were evaluated using QEPPI. The results showed that QEPPI is more suitable for the early screening of PPI-targeting compounds than QED. QEPPI was also considered an extended concept of "Rule-of-Four" (RO4), a PPI inhibitor index proposed by Morelli et al. We have been able to turn a discrete value indicator into a continuous value indicator. To compare the discriminatory performance of QEPPI and RO4, we evaluated their discriminatory performance using the datasets of PPI-target compounds and FDA-approved drugs using Fscore and other indices. Results of the F-score of RO4 and QEPPI were 0.446 and 0.499, respectively. QEPPI demonstrated better performance and enabled quantification of drug-likeness for early-stage PPI drug discovery. Hence, it could be used as an initial filter for efficient screening of PPI-targeting compounds, which has been difficult in the past.
Protein-protein interactions (PPIs) are associated with various diseases; hence, they are important targets in drug discovery. However, the physicochemical empirical properties of PPI-targeted drugs are distinct from those of conventional small molecule oral pharmaceuticals, which adhere to the ”rule of five (RO5)”. Therefore, developing PPI-targeted drugs using conventional methods, such as molecular generation models, is challenging. In this study, we propose a molecular generation model based on deep reinforcement learning that is specialized for the production of PPI inhibitors. By introducing a scoring function that can represent the properties of PPI inhibitors, we successfully generated potential PPI inhibitor compounds. These newly constructed virtual compounds possess the desired properties for PPI inhibitors, and they show similarity to commercially available PPI libraries. The virtual compounds are freely available as a virtual library.
The quantification of drug-likeness is very useful for screening drug candidates. The quantitative estimate of drug-likeness (QED) is the most commonly used quantitative drug efficacy assessment method proposed by Bickerton <i>et al</i>. However, QED is not considered suitable for screening compounds that target protein-protein interactions (PPI), which have garnered significant interest in recent years. Therefore, we developed a method called the quantitative estimate of protein-protein interaction targeting drug-likeness (QEPPI), specifically for early-stage screening of PPI-targeting compounds. QEPPI is an extension of the QED method for PPI-targeting drugs and developed using the QED concept, involving modeling physicochemical properties based on the information available on the drug. QEPPI models the physicochemical properties of compounds that have been reported in the literature to act on PPIs. Compounds in iPPI-DB, which comprises PPI inhibitors and stabilizers, and FDA-approved drugs were evaluated using QEPPI. The results showed that QEPPI is more suitable for the early screening of PPI-targeting compounds than QED. QEPPI was also considered an extended concept of "Rules of Four" (RO4), a PPI inhibitor index proposed by Morelli <i>et al</i>. To compare the discriminatory performance of QEPPI and RO4, we evaluated their discriminatory performance using the datasets of PPI-target compounds and FDA-approved drugs using F-score and other indices. Results of the F-score of RO4 and QEPPI were 0.446 and 0.499, respectively. QEPPI demonstrated better performance and enabled quantification of drug-likeness for early-stage PPI drug discovery. Hence, it could be used as an initial filter for efficient screening of PPI-targeting compounds, which has been difficult in the past.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.