Adaptive divergence at the microgeographic scale has been generally disregarded because high gene flow is expected to disrupt local adaptation. Yet, growing number of studies reporting adaptive divergence at a small spatial scale highlight the importance of this process in evolutionary biology. To investigate the genetic basis of microgeographic local adaptation, we conducted a genome-wide scan among sets of continuously distributed populations of Arabidopsis halleri subsp. gemmifera that show altitudinal phenotypic divergence despite gene flow. Genomic comparisons were independently conducted in two distinct mountains where similar highland ecotypes are observed, presumably as a result of convergent evolution. Here, we established a de novo reference genome and employed an individual-based resequencing for a total of 56 individuals. Among 527,225 reliable SNP loci, we focused on those showing a unidirectional allele frequency shift across altitudes. Statistical tests on the screened genes showed that our microgeographic population genomic approach successfully retrieve genes with functional annotations that are in line with the known phenotypic and environmental differences between altitudes. Furthermore, comparison between the two distinct mountains enabled us to screen out those genes that are neutral or adaptive only in either mountain, and identify the genes involved in the convergent evolution. Our study demonstrates that the genomic comparison among a set of genetically connected populations, instead of the commonly-performed comparison between two isolated populations, can also offer an effective screening for the genetic basis of local adaptation.
A phylogeographic study of four tree species (Padus grayana, Euonymus oxyphyllus, Magnolia hypoleuca, and Carpinus laxiflora) growing in Japanese deciduous broad-leaved forests was conducted based on chloroplast DNA (cpDNA) variations. Using nucleotide sequences of 702-1,059 bp of intergenic spacers of cpDNA, 20, 27, eight, and eight haplotypes were detected among 251, 251, 226, and 262 individuals sampled from 67, 79, 75, and 71 populations of the above species, respectively. The geographical pattern of the cpDNA variations was highly structured in each species, and the following three regional populations were genetically highly differentiated among all four species: (1) the Sea of Japan-side area, (2) the Kanto region, and (3) southwestern Japan. Based on some interspecific similarities among the phylogeographic patterns, the following migration scenario of Japanese deciduous broad-leaved forests was postulated. During the last glacial maximum (LGM), the forests were separately distributed in six regions. After LGM, as the climate warmed, the forests in eastern Japan separately expanded from each of the refugia along the Sea of Japan-side or along the Pacific Ocean-side. In contrast, those in southwestern Japan retreated and moved to high altitudes from each of the continuous forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.