Recent studies indicate an accelerated progression of nonalcoholic steatohepatitis (NASH) in postmenopausal women. Hypercholesterolemia, an important risk factor for NASH progression, is often observed after menopause. This study examined the effects of estrogen on NASH in ovariectomized (OVX) mice fed a high-fat and high-cholesterol (HFHC) diet. To investigate the effects of estrogen deficiency, OVX mice and sham-operated (SO) mice were fed normal chow or HFHC diet for 6 wk. Next, to investigate the effects of exogenous estrogen replenishment, OVX mice fed with HFHC diet were treated with implanted hormone release pellets (containing 17β-estradiol or placebo vehicle) for 6 wk. OVX mice on the HFHC diet showed enhanced liver injury with increased liver macrophage infiltration and elevated serum cholesterol levels compared with SO-HFHC mice. Hepatocyte monocyte chemoattractant protein-1 (MCP1) protein expression in OVX-HFHC mice was also enhanced compared with SO-HFHC mice. In addition, hepatic inflammatory gene expressions, including monocytes chemokine (C-C motif) receptor 2 (CCR2), were significantly elevated in OVX-HFHC mice. Estrogen treatment improved serum cholesterol levels, liver injury, macrophage infiltration, and inflammatory gene expressions in OVX-HFHC mice. Moreover, the elevated expression of liver CCR2 and MCP1 were decreased by estrogen treatment in OVX-HFHC mice, whereas low-density lipoprotein dose dependently enhanced CCR2 expression in THP1 monocytes. Our study demonstrated that estrogen deficiency accelerated NASH progression in OVX mice fed HFHC diet and that this effect was improved by estrogen therapy. Hypercholesterolemia in postmenopausal women would be a potential risk factor for NASH progression.
Lack of adiponectin enhanced, and adiponectin administration prevented steatohepatitis progression in mice. These changes were due to the anti-oxidative effects of adiponectin, and its effects on Kupffer cells recruitment and phenotype polarization. Augmentation of adiponectin effects could be a useful preventive approach for NASH progression.
Grb2-associated binder 1 (Gab1) adaptor protein amplifies signals downstream of a broad range of growth factors/receptor tyrosine kinases. Although these signals are implicated in liver fibrogenesis, the role of Gab1 remains unclear. To elucidate the role of Gab1, liver fibrosis was examined in hepatocyte-specific Gab1-conditional knockout (Gab1CKO) mice upon bile duct ligation (BDL). Gab1CKO mice developed exacerbated liver fibrosis with activation of hepatic myofibroblasts after BDL compared with control mice. The antifibrotic role of hepatocyte Gab1 was further confirmed by another well-established mouse model of liver fibrosis using chronic injections of carbon tetrachloride. After BDL, Gab1CKO mice also displayed exacerbated liver injury, decreased hepatocyte proliferation, and enhanced liver inflammation. Furthermore, cDNA microarray analysis was used to investigate the potential molecular mechanisms of the Gab1-mediated signal in liver fibrosis, and the fibrosis-promoting factor chemokine (C-C motif) ligand 5 ( Ccl5) was identified as upregulated in the livers of Gab1CKO mice following BDL. Interestingly, in vitro studies using primary hepatocytes isolated from control and Gab1CKO mice revealed that the loss of Gab1 resulted in increased hepatocyte CCL5 synthesis upon lipopolysaccharide stimulation. Finally, pharmacological antagonism of CCL5 reduced BDL-induced liver fibrosis in Gab1CKO mice. In conclusion, our results demonstrate that hepatocyte Gab1 is required for liver fibrosis and that hepatocyte CCL5 could be an important contributor to this process. Thus, we present a novel antifibrotic function of hepatocyte Gab1 in liver fibrogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.