Several recent prospective clinical trials have investigated the effect of supplementary vibration applied with fixed appliances in an attempt to accelerate tooth movement and shorten the duration of orthodontic treatment. Among them, some studies reported an increase in the rate of tooth movement, but others did not. This technique is still controversial, and the underlying cellular and molecular mechanisms remain unclear. In the present study, we developed a new vibration device for a tooth movement model in rats, and investigated the efficacy and safety of the device when used with fixed appliances. The most effective level of supplementary vibration to accelerate tooth movement stimulated by a continuous static force was 3 gf at 70 Hz for 3 minutes once a week. Furthermore, at this optimum-magnitude, high-frequency vibration could synergistically enhance osteoclastogenesis and osteoclast function via NF-κB activation, leading to alveolar bone resorption and finally, accelerated tooth movement, but only when a static force was continuously applied to the teeth. These findings contribute to a better understanding of the mechanism by which optimum-magnitude high-frequency vibration accelerates tooth movement, and may lead to novel approaches for the safe and effective treatment of malocclusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.