SummaryThe filamentous fungus Alternaria alternata contains seven pathogenic variants (pathotypes), which produce different host-specific toxins and cause diseases on different plants. The strawberry pathotype produces host-specific AF-toxin and causes Alternaria black spot of strawberry. This pathotype is also pathogenic to Japanese pear cultivars susceptible to the Japanese pear pathotype that produces AK-toxin. The strawberry pathotype produces two related molecular species, AF-toxins I and II: toxin I is toxic to both strawberry and pear, and toxin II is toxic only to pear. Previously, we isolated a cosmid clone pcAFT-1 from the strawberry pathotype that contains three genes involved in AF-toxin biosynthesis. Here, we have identified a new gene, designated AFTS1 , from pcAFT-1. AFTS1 encodes a protein with similarity to enzymes of the aldo-ketoreductase superfamily. Targeted mutation of AFTS1 diminished the host range of the strawberry pathotype: D D D D aftS1 mutants were pathogenic to pear, but not to strawberry, as is the Japanese pear pathotype. These mutants were found to produce AF-toxin II, but not AF-toxin I. These data represent a novel example of how the host range of a plant pathogenic fungus can be restricted by modification of secondary metabolism.
The apple pathotype of Alternaria alternata produces the cyclic depsipeptide AM-toxin and causes Alternaria blotch of apple. Previously, we cloned AMT2 from the apple pathotype as an orthologue of AFTS1, which is required for biosynthesis of the decatrienoic acid ester AF-toxin I of the strawberry pathotype. These genes were predicted to encode aldo-keto reductases involved in biosynthesis of a common precursor, 2-hydroxy-isovaleric acid, of AF-toxin I and AM-toxin. In this study, we analyzed the function of AMT2 in AM-toxin biosynthesis in the apple pathotype. DNA gel blot analysis of the apple pathotype strain IFO8984 with five restriction enzymes suggested that this strain has a single copy of AMT2 in the genome. However, gene disruption experiments showed that IFO8984 probably has three copies of AMT2. We made mutants having one or two copies of AMT2 disrupted. The single-copy mutants produced less AM-toxin than did the wild type and were still as pathogenic as the wild type. The two-copy mutants produced trace or undetectable amounts of AM-toxin and were markedly reduced in pathogenicity. Thus, AMT2 was verified to be required for AM-toxin biosynthesis and hence pathogenicity. The fact that the two-copy mutants have a remaining copy of AMT2 suggests that multiple copies of AMT2 are prerequisite for the pathogen to produce enough AM-toxin for full pathogenicity.
The filamentous fungus Alternaria alternata contains seven pathogenic variants (pathotypes), which produce host-specific toxins and cause diseases on different plants. Previously, the gene cluster involved in host-specific AK-toxin biosynthesis of the Japanese pear pathotype was isolated, and four genes, named AKT genes, were identified. The AKT homologs were also found in the strawberry and tangerine pathotypes, which produce AF-toxin and ACT-toxin, respectively. This result is consistent with the fact that the toxins of these pathotypes share a common 9,10-epoxy-8-hydroxy-9-methyl-decatrienoic acid structural moiety. In this study, three of the AKT homologs (AFT1-1, AFTR-1, and AFT3-1) were isolated on a single cosmid clone from strain NAF8 of the strawberry pathotype. In NAF8, all of the AKT homologs were present in multiple copies on a 1.05-Mb chromosome. Transformation-mediated targeting of AFT1-1 and AFT3-1 in NAF8 produced AF-toxin-minus, nonpathogenic mutants. All of the mutants lacked the 1.05-Mb chromosome encoding the AFT genes. This chromosome was not essential for saprophytic growth of this pathogen. Thus, we propose that a conditionally dispensable chromosome controls host-specific pathogenicity of this pathogen.
Purpose
Codrituzumab, a humanized antibody against glypican-3, is highly expressed in HCC. A phase I study evaluated the combination with sorafenib in HCC.
Patients and methods
In a 3 + 3 design, codrituzumab was given intravenously in various doses with sorafenib 400 mg twice daily to patients with advanced HCC, age ≥18, ECOG 0–1, Child-Pugh A and B7, adequate organ functions, and no prior systemic therapy, with tumor assessment by RECIST 1.0 and safety by CTCAE 3.0. PK and pre, during, and post-therapy 124I radiolabeled codrituzumab PET scan imaging were performed.
Results
41 patients were enrolled: 2.5 mg/kg weekly (qw) (12), 5 mg/kg qw (12), 10 mg/kg qw (3), 1600 mg every 2 weeks (q2w) (6), and 1600 mg qw (7). Two drug limiting toxicities occurred: grade 3 hyponatremia at 5 mg/kg and grade 3 hyponatremia and hyperglycemia at 1600 mg q2w. Adverse events occurred in 80% of patients, including at least one ≥grade 3: ten (25%) increased AST, three (7.5%) increased ALT, and ten (25%) increased lipase. There were no responses and nine (25.7%) had stable disease. PK Cmax and AUCt of codrituzumab and sorafenib were comparable to single-agent data. Thirteen out of 14 patients showed 124I radiolabeled codrituzumab uptake in tumor. In all three patients who underwent a post-progression PET, glypican-3 remained expressed.
Conclusion
Codrituzumab plus sorafenib were tolerated at 1600 mg q2w and 400 mg bid, respectively, with no responses. Codrituzumab exerts selective distribution to HCC cells, and GPC3 does not show any down-regulation post-progression (NCT00976170).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.