Small molecular weight (MW) glucan derivatives could be a useful tool for studying the mechanisms of beta-glucan mediated biological activity, especially as antagonists for a beta-glucan receptor. This paper described the stability of various (1-->6) branched (1-->3)-beta-D-glucans to formolysis in the preparation of small MW derivatives. The glucans used were curdlan (linear), pachyman (few branches), GRN (one branch in every third main chain unit; 2/6), SPG (2/6), SSG (3/6), and OL-2 (4/6). Curdlan and pachyman were easily degraded to oligosaccharides by degradation for 20 min at 100 degrees C by 90% formic acid. However, branched glucans, especially the highly branched glucans, SSG and OL-2, were significantly resistant to degradation, and the majority remained high MW. SSG required a longer period and/or a higher temperature (121 degrees C treatment) to produce small MW derivatives. Branched glucans were also resistant to zymolyase (an endo-(1-->3)-beta-D-glucan hydrolase) digestion. These facts suggest that the (1-->6)-beta-D-branched residues contribute to the glucans' resistance to formic acid degradation and zymolyase digestion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.