Mn1-xZnxFe2O4(x= 0, 0.1, 0.2, 0.3, 0.4, 0.5) are synthesized using sintering coprecipitation method. The coprecipitation retains from 0 hours to 48 hours at 1200 °C. The synthesis of a Mn0.6Zn0.4Fe2O4is almost completed even though retaining time is for 0 hours at 1200 °C. The crystal growth of Mn0.6Zn0.4Fe2O4particles proceeds rapidly retaining up to 6 hours and saturates retaining more than 6 hours at 1200 °C. The permeability and the electric resistivity are affected by the crystal growth of Mn0.6Zn0.4Fe2O4particles.
Mn0.7Zn0.3Fe2O4 is synthesized by sintering the nanosize precursor with sintering aids, which is synthesized by the coprecipitation method. The crystal growth of Mn0.7Zn0.3Fe2O4 is controlled by the amount of sintering aids. Complex permeability is explained by the Maxwell-Garnett (MG) effective medium model. The ferromagnetic resonance frequency more than 1 GHz can be explained by the shape anisotropy under the sintering process of the Mn0.7Zn0.3Fe2O4 particles. These results suggest possibility of Mn0.7Zn0.3Fe2O4 as a high frequency device material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.