An
interesting multicomponent crystal consisting of drug–drug
combination was synthesized. The multidrug crystals consisted of antidiabetic
drugs glicalzide and metformin. Single crystal X-ray structure analysis
revealed that this multicomponent crystal is salt-type multicomponent
crystal. The physicochemical properties of this crystal were significantly
different from those of the parent drugs. The multicomponent crystal
showed impressive solubility and dissolution rate compared to that
of the raw material of gliclazide. Also, the hygroscopicity issue
in metformin was tackled by the formation of multicomponent crystal.
These physicochemical property alterations were associated with the
existence of hydrophilic channel structure, which was confirmed by
microscopic analysis. Therefore, the weaknesses of each component
were mutually solved.
Naloxone, a potent and specific opioid antagonist, has been shown in previous studies to have an influx clearance across the rat blood-brain barrier (BBB) two times greater than the efflux clearance. The purpose of the present study was to characterize the influx transport of naloxone across the rat BBB using the brain uptake index (BUI) method. The initial uptake rate of [(3)H]naloxone exhibited saturability in a concentration-dependent manner (concentration range 0.5 microM to 15 mM) in the presence of unlabeled naloxone. These results indicate that both passive diffusion and a carrier-mediated transport mechanism are operating. The in vivo kinetic parameters were estimated as follows: the Michaelis constant, K(t), was 2.99+/-0.71 mM; the maximum uptake rate, J(max), was 0.477+/-0.083 micromol/min/g brain; and the nonsaturable first-order rate constant, K(d), was 0.160+/-0.044 ml/min/g brain. The uptake of [(3)H]naloxone by the rat brain increased as the pH of the injected solution was increased from 5.5 to 8.5 and was strongly inhibited by cationic H(1)-antagonists such as pyrilamine and diphenhydramine and cationic drugs such as lidocaine and propranolol. In contrast, the BBB transport of [(3)H]naloxone was not affected by any typical substrates for organic cation transport systems such as tetraethylammonium, ergothioneine or L-carnitine or substrates for organic anion transport systems such as p-aminohippuric acid, benzylpenicillin or pravastatin. The present results suggest that a pH-dependent and saturable influx transport system that is a selective transporter for cationic H(1)-antagonists is involved in the BBB transport of naloxone in the rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.