C/EBP homologous protein (CHOP) is a stress-inducible nuclear protein that is crucial for the development of programmed cell death and regeneration; however, the regulation of its function has not been well characterized. Slbo, a Drosophila homolog of C/EBP (CCAAT/enhancer binding protein), was shown to be unstabilized by tribbles. Here, we identified TRB3 as a tribbles ortholog in humans, which associated with CHOP to suppress the CHOP-dependent transactivation. TRB3 is induced by various forms endoplasmic reticulum (ER) stress later than CHOP. Tunicamycin treatment enhanced the TRB3 promoter activity, while dominant-negative forms of CHOP suppressed the tunicamycin-induced activation. In addition, the tunicamycin response region in the TRB3 promoter contains amino-acid response elements overlapping the CHOP-binding site, and CHOP and ATF4 cooperated to activate this promoter activity. Knockdown of endogenous ATF4 or CHOP expression dramatically repressed tunicamycin-induced TRB3 induction. Furthermore, knockdown of TRB3 expression decreased ER stress-dependent cell death. These results indicate that TRB3 is a novel target of CHOP/ATF4 and downregulates its own induction by repression of CHOP/ATF4 functions, and that it is involved in CHOP-dependent cell death during ER stress.
The JPN Guidelines 2015 were prepared using the most up-to-date methods, and including the latest recommended medical treatments, and we are confident that this will make them easy for many clinicians to use, and will provide a useful tool in the decision-making process for the treatment of patients, and optimal medical support. The free mobile application and calculator for the JPN Guidelines 2015 is available via http://www.jshbps.jp/en/guideline/jpn-guideline2015.html.
Mutations in Aurora of Drosophila and related Saccharomyces cerevisiae Ipl1 kinase are known to cause abnormal chromosome segregation. We have isolated a cDNA encoding a novel human protein kinase of 402 amino acids with a predicted molecular mass of 45.9 kDa, which shares high amino acid identities with the Aurora/Ipl1 protein kinase family; hence the cDNA is designated as aik (aurora/IPL1-related kinase). Amino acid sequence of C-terminal kinase domain of Aik shares 86, 86, 72, 59, and 49% identity with those of Xenopus XLP46APK and XLP46BPK, mouse STK-1, Aurora of Drosophila, and yeast Ipl1, respectively, whereas N-terminal domain of Aik shares high homology only with those of XLP46APK and XLP46BPK. Northern and Western blotting analyses revealed that Aik is expressed highly in testis and various proliferating cells including HeLa cells. In HeLa cells, the endogenous levels of aik mRNA and protein contents are tightly regulated during cell cycle progression. Both of these levels are low in G 1 /S, accumulate during G 2 /M, and reduce rapidly after mitosis. Its protein kinase activity is also enhanced at mitosis as inferred by exogenous casein phosphorylation. Immunofluorescence studies using a specific antibody have shown that Aik is localized to the spindle pole during mitosis, especially from prophase through anaphase. These results strongly suggest that Aik is a novel member of a protein kinase family possibly involved in a centrosome function(s) such as chromosome segregation or spindle formation.
Overexpression of transforming growth factor  (TGF-) has been shown to play pathogenic roles in progression of renal fibrosis, and the severity of tubulointerstitial fibrosis correlates better with renal function than the severity of glomerulosclerosis. Smad proteins are signaling transducers downstream from TGF- receptors. Three families of Smad proteins have been identified: receptorregulated Smad2 and Smad3, common partner Smad4, and inhibitory Smad7 (part of a negative-feedback loop). We investigated Smad-mediated TGF- signaling pathway and regulatory mechanisms of inhibitory Smad7 in unilateral ureteral obstruction (UUO) kidneys in mice, a model of progressive tubulointerstitial fibrosis. Compared with sham-operated kidneys, the level of Smad7 protein, but not mRNA, decreased progressively in UUO kidneys, whereas immunoreactivity for nuclear phosphorylated Smad2 and Smad3 and renal fibrosis were inversely increased. Furthermore, we demonstrated that both the degradation and ubiquitination activity of Smad7 protein were increased markedly in UUO kidneys compared with sham-operated ones. We also found that both Smurf1 and Smurf2 (Smad ubiquitination regulatory factors), which are E3 ubiquitin ligases for Smad7, were increased and that they interacted with Smad7 in UUO kidneys. Our results suggest that the reduction of Smad7 protein resulting from enhanced ubiquitin-dependent degradation plays a pathogenic role in progression of tubulointerstitial fibrosis.transforming growth factor  ͉ Smad proteins ͉ tubulointerstitial fibrosis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.