Genetic code reprogramming is a method for the reassignment of arbitrary codons from proteinogenic amino acids to nonproteinogenic ones; thus, specific sequences of nonstandard peptides can be ribosomally expressed according to their mRNA templates. Here we describe a protocol that facilitates genetic code reprogramming using flexizymes integrated with a custom-made in vitro translation apparatus, referred to as the flexible in vitro translation (FIT) system. Flexizymes are flexible tRNA acylation ribozymes that enable the preparation of a diverse array of nonproteinogenic acyl-tRNAs. These acyl-tRNAs read vacant codons created in the FIT system, yielding the desired nonstandard peptides with diverse exotic structures, such as N-methyl amino acids, D-amino acids and physiologically stable macrocyclic scaffolds. The facility of the protocol allows a wide variety of applications in the synthesis of new classes of nonstandard peptides with biological functions. Preparation of flexizymes and tRNA used for genetic code reprogramming, optimization of flexizyme reaction conditions and expression of nonstandard peptides using the FIT system can be completed by one person in approximately 1 week. However, once the flexizymes and tRNAs are in hand and reaction conditions are fixed, synthesis of acyl-tRNAs and peptide expression is generally completed in 1 d, and alteration of a peptide sequence can be achieved by simply changing the corresponding mRNA template.
The steady-state levels of microRNAs (miRNAs) and their activities are regulated by the post-transcriptional processes. It is known that 39 ends of several miRNAs undergo post-dicing adenylation or uridylation. We isolated the liver-specific miR-122 from human hepatocytes and mouse livers. Direct analysis by mass spectrometry revealed that one variant of miR-122 has a 39-terminal adenosine that is introduced after processing by Dicer. We identified GLD-2, which is a regulatory cytoplasmic poly(A) polymerase, as responsible for the 39-terminal adenylation of miR-122 after unwinding of the miR-122/ miR-122* duplex. In livers from GLD-2-null mice, the steady-state level of the mature form of miR-122 was specifically lower than in heterozygous mice, whereas no reduction of pre-miR-122 was observed, demonstrating that 39-terminal adenylation by GLD-2 is required for the selective stabilization of miR-122 in the liver.Supplemental material is available at http://www.genesdev.org.
Naturally occurring peptides often possess macrocyclic and N-methylated backbone. These features grant them structural rigidity, high affinity to targets, proteolytic resistance, and occasionally membrane permeability. Because such peptides are produced by either nonribosomal peptide synthetases or enzymatic posttranslational modifications, it is yet a formidable challenge in degenerating sequence or length and preparing libraries for screening bioactive molecules. Here, we report a new means of synthesizing a de novo library of "natural product-like" macrocyclic N-methyl-peptides using translation machinery under the reprogrammed genetic code, which is coupled with an in vitro display technique, referred to as RaPID (random nonstandard peptides integrated discovery) system. This system allows for rapid selection of strong binders against an arbitrarily chosen therapeutic target. Here, we have demonstrated the selection of anti-E6AP macrocyclic N-methyl-peptides, one of which strongly inhibits polyubiqutination of proteins such as p53.
Multidrug and toxic compound extrusion (MATE) family transporters are conserved in the three primary domains of life (Archaea, Bacteria and Eukarya), and export xenobiotics using an electrochemical gradient of H(+) or Na(+) across the membrane. MATE transporters confer multidrug resistance to bacterial pathogens and cancer cells, thus causing critical reductions in the therapeutic efficacies of antibiotics and anti-cancer drugs, respectively. Therefore, the development of MATE inhibitors has long been awaited in the field of clinical medicine. Here we present the crystal structures of the H(+)-driven MATE transporter from Pyrococcus furiosus in two distinct apo-form conformations, and in complexes with a derivative of the antibacterial drug norfloxacin and three in vitro selected thioether-macrocyclic peptides, at 2.1-3.0 Å resolutions. The structures, combined with functional analyses, show that the protonation of Asp 41 on the amino (N)-terminal lobe induces the bending of TM1, which in turn collapses the N-lobe cavity, thereby extruding the substrate drug to the extracellular space. Moreover, the macrocyclic peptides bind the central cleft in distinct manners, which correlate with their inhibitory activities. The strongest inhibitory peptide that occupies the N-lobe cavity may pave the way towards the development of efficient inhibitors against MATE transporters.
Mammalian mitochondrial (mt) mRNAs have short poly(A) tails at their 3 termini that are post-transcriptionally synthesized by mt poly(A) polymerase (PAP). The polyadenylation of mt mRNAs is known to be a key process needed to create UAA stop codons that are not encoded in mtDNA. In some cases, polyadenylation is required for the tRNA maturation by editing of its 3 terminus. However, little is known about the functional roles the poly(A) tail of mt mRNAs plays in mt translation and RNA turnover. Here we show human mt PAP (hmtPAP) and human polynucleotide phosphorylase (hPNPase) control poly(A) synthesis in human mitochondria. Partial inactivation of hmtPAP by RNA interference using small interfering RNA in HeLa cells resulted in shortened poly(A) tails and decreased steady state levels of some mt mRNAs as well as their translational products. Moreover, knocking down hmtPAP generated markedly defective mt membrane potentials and reduced oxygen consumption. In contrast, knocking down hPNPase showed significantly extended poly(A) tails of mt mRNAs. These results demonstrate that the poly(A) length of human mt mRNAs is controlled by polyadenylation by hmtPAP and deadenylation by hPNPase, and polyadenylation is required for the stability of mt mRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.