Substitution Theorem is a new theorem in untyped lambda calculus, which was proved in 2006. This theorem states that for a given lambda term and given free variables in it, the term becomes weakly normalizing when we substitute arbitrary weakly normalizing terms for these free variables, if the term becomes weakly normalizing when we substitute a single arbitrary weakly normalizing term for these free variables. This paper formalizes and verifies this theorem by using the higher-order theorem prover HOL. A control path, which is the key notion in the proof, explicitly uses names of bound variables in lambda terms, and it is defined only for lambda terms without bound variable renaming. The lambda terms without bound variable renaming are formalized by using the HOL package based on contextual alpha-equivalence. The verification uses 10119 lines of HOL code and 326 lemmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.