We applied a time-resolved small-angle neutron scattering technique to the vesicle system of dimyristoylphosphatidylcholine for the first time to determine lipid kinetics. The observed kinetics could be explicitly represented by a simple model that includes two independent kinetic parameters, i.e., the rates of transbilayer and interbilayer exchange. This technique is perfectly suited for the determination of lipid exchange kinetics in equilibrium and applicable to evaluation of the activity of the factors relevant to lipid migration, such as translocase and lipid transfer proteins.
Nanodiscs are phospholipid-protein complexes which are relevant to nascent high-density lipoprotein and are applicable as a drug carrier and a tool to immobilize membrane proteins. We evaluated the structure and dynamics of the nanoparticles consisting of dimyristoylphosphatidylcholine (DMPC) and apolipoprotein A-I (apoA-I) with small-angle neutron scattering (SANS) and fluorescence methods and compared them with static/dynamic properties for large unilamellar vesicles. SANS revealed that the nanodisc includes a lipid bilayer with a thickness of 44 A and a radius of 37 A, in which each lipid occupies a smaller area than the reported molecular area of DMPC in vesicles. Fluorescence measurements suggested that DMPC possesses a lower entropy in nanodiscs than in vesicles, because apoA-I molecules, which surround the bilayer, force closer lipid packing, but allow water penetration to the acyl chain ends. Time-resolved SANS experiments revealed that nanodiscs represent a 20-fold higher lipid transfer via an entropically favorable process. The results put forward a conjunction of static/dynamic properties of nanodiscs, where the entropic constraints are responsible for the accelerated desorption of lipids.
We applied a time-resolved small-angle neutron scattering technique to vesicle systems to determine interparticle transfer and flip-flop of phospholipids. Measurements were performed for large unilamellar vesicles, consisting of dimyristoylphosphatidylcholine (DMPC), 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), or 1-palmitoyl-2-oleoylphosphatidic acid (POPA), which differ either in their acyl chains or headgroup. POPC, which is analogous to naturally occurring phosphatidylcholines, exhibited no transbilayer transfer and very slow interbilayer migration. POPC on the inner leaflet of vesicles did not flop even when phospholipase D converted all POPC molecules on the outer leaflet into POPA, which was shown to exhibit fast flip-flop. From these results, together with the observation that the flip-flop of DMPC was entirely inhibited in the presence of cholesterol, it is deduced that the flip-flop of phosphatidylcholines does not take place spontaneously in cellular plasma membranes rich in cholesterol and that it requires enzymatic activities of energy-dependent and/or -independent flippases/floppases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.