Recent studies have suggested that neuronal death in Alzheimer's disease or ischemia could arise from dysfunction of the endoplasmic reticulum (ER). Although caspase-12 has been implicated in ER stress-induced apoptosis and amyloid-β (Aβ)–induced apoptosis in rodents, it is controversial whether similar mechanisms operate in humans. We found that human caspase-4, a member of caspase-1 subfamily that includes caspase-12, is localized to the ER membrane, and is cleaved when cells are treated with ER stress-inducing reagents, but not with other apoptotic reagents. Cleavage of caspase-4 is not affected by overexpression of Bcl-2, which prevents signal transduction on the mitochondria, suggesting that caspase-4 is primarily activated in ER stress-induced apoptosis. Furthermore, a reduction of caspase-4 expression by small interfering RNA decreases ER stress-induced apoptosis in some cell lines, but not other ER stress-independent apoptosis. Caspase-4 is also cleaved by administration of Aβ, and Aβ-induced apoptosis is reduced by small interfering RNAs to caspase-4. Thus, caspase-4 can function as an ER stress-specific caspase in humans, and may be involved in pathogenesis of Alzheimer's disease.
Cell migration is fundamental to organogenesis. During development, the enteric neural crest cells (ENCCs) that give rise to the enteric nervous system (ENS) migrate and colonize the entire length of the gut, which undergoes substantial growth and morphological rearrangement. How ENCCs adapt to such changes during migration, however, is not fully understood. Using time-lapse imaging analyses of mouse ENCCs, we show that a population of ENCCs crosses from the midgut to the hindgut via the mesentery during a developmental time period in which these gut regions are transiently juxtaposed, and that such 'trans-mesenteric' ENCCs constitute a large part of the hindgut ENS. This migratory process requires GDNF signaling, and evidence suggests that impaired trans-mesenteric migration of ENCCs may underlie the pathogenesis of Hirschsprung disease (intestinal aganglionosis). The discovery of this trans-mesenteric ENCC population provides a basis for improving our understanding of ENS development and pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.