Recently, much attention has been paid to "nonclassical" bioactive peptides, which are fragmented peptides simultaneously produced during maturation and degradation of various functional proteins. We identified many fragmented peptides derived from various mitochondrial proteins including mitocryptide-1 and mitocryptide-2 that efficiently activate neutrophils. These endogenous, functionally active, fragmented peptides are referred to as "cryptides." Among them, mitocryptide-2 is an N-formylated cryptide cleaved from mitochondrial cytochrome b that is encoded in mitochondrial DNA (mtDNA). It is known that 13 proteins encoded in mtDNA are translated in mitochondria as N-formylated forms, suggesting the existence of endogenous N-formylated peptides other than mitocryptide-2. Here, we investigated the effects of N-formylated peptides presumably cleaved from mtDNA-encoded proteins other than cytochrome b on the functions of neutrophilic cells to elucidate possible regulation by endogenous N-formylated cryptides. Four N-formylated cryptides derived from cytochrome c oxidase subunit I and NADH dehydrogenase subunits 4, 5, and 6 among 12 peptides from mtDNA-encoded proteins efficiently induced not only migration but also β-hexosaminidase release, which is an indicator of neutrophilic phagocytosis, in HL-60 cells differentiated into neutrophilic cells. These activities were comparable to or higher than those induced by mitocryptide-2. Although endogenous N-formylated peptides that are contained in mitochondrial damage-associated molecular patterns (DAMPs) have yet to be molecularly identified, they have been implicated in innate immunity. Thus, N-formylated cryptides including mitocryptide-2 are first-line candidates for the contents of mitochondrial DAMPs to promote innate immune responses. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 580-587, 2016.
Phagocytic neutrophils express formyl peptide receptors (FPRs; FPR1 and FPR2) that distinctly recognize peptides starting with an N-formylated methionine (fMet). This is a hallmark of bacterial metabolism; similar to prokaryotes, the starting amino acid in synthesis of mitochondrial DNA-encoded proteins is an fMet. Mitochondrial cryptic peptides (mitocryptides; MCTs) with an N-terminal fMet could be identified by our innate immune system; however, in contrast to our knowledge about bacterial metabolites, very little is known about the recognition profiles of MCTs. In this study, we determined the neutrophil-recognition profiles and functional output of putative MCTs originating from the N termini of the 13 human mitochondrial DNA-encoded proteins. Six of the thirteen MCTs potently activated neutrophils with distinct FPR-recognition profiles: MCTs from ND3 and ND6 have a receptor preference for FPR1; MCTs from the proteins ND4, ND5, and cytochrome prefer FPR2; and MCT-COX1 is a dual FPR1/FPR2 agonist. MCTs derived from ND2 and ND4L are very weak neutrophil activators, whereas MCTs from ND1, ATP6, ATP8, COX2, and COX3, do not exert agonistic or antagonistic FPR effects. In addition, the activating MCTs heterologously desensitized IL-8R but primed the response to the platelet-activating factor receptor agonist. More importantly, our data suggest that MCTs have biased signaling properties in favor of activation of the superoxide-generating NADPH oxidase or recruitment of β-arrestin. In summary, we identify several novel FPR-activating peptides with sequences present in the N termini of mitochondrial DNA-encoded proteins, and our data elucidate the molecular basis of neutrophil activation by MCTs.
We recently identified a novel family of neutrophil-activating peptides including mitocryptide-1 and mitocryptide-2 (MCT-2) that are endogenously produced from various mitochondrial proteins. Among them, MCT-2 is an N-formylated pentadecapeptide derived from mitochondrial cytochrome b and is found to promote neutrophilic migration and phagocytosis efficiently. Signaling mechanisms of neutrophil activation by MCT-2 have been investigated at the cellular level, and MCT-2 has been demonstrated to be an endogenous specific ligand for formyl peptide receptor-2 (also referred to as formyl peptide receptor-like 1). It was also found that MCT-2 promoted neutrophilic functions via the activation of G proteins and phosphorylation of ERK1/2 consecutively. However, the physiological production, distribution, and functions of MCT-2 are not yet elucidated. Here, to investigate the roles of MCT-2 in vivo, we generated monoclonal antibodies (mAbs) against human MCT-2 (hMCT-2) that have two different characteristics. One mAb, NhM2A1, not only bound to the region of positions 10-15 of hMCT-2 but also recognized its C-terminal cleavage site that is presumably produced upon enzymatic hydrolysis of cytochrome b, indicating that NhM2A1 specifically interacts with hMCT-2 but not its parent protein. Moreover, we succeeded in acquiring a specific neutralizing mAb, NhM2A5, which blocks the bioactivities of hMCT-2. Specifically, NhM2A5 inhibited hMCT-2-induced β-hexosaminidase release in neutrophilic/granulocytic differentiated HL-60 cells by binding to the region of positions 5-12 of hMCT-2. Functional analysis using obtained mAbs that specifically recognize hMCT-2 but not its parent protein, cytochrome b, and that neutralize bioactivities of hMCT-2 is expected to reveal the physiological roles of MCT-2, which are presently very difficult to investigate. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Mitocryptides are a novel family of endogenous neutrophil-activating peptides originating from various mitochondrial proteins. Mitocryptide-2 (MCT-2) is one of such neutrophil-activating peptides, and is produced as an N-formylated pentadecapeptide from mitochondrial cytochrome b. Although MCT-2 is a specific endogenous ligand for formyl peptide receptor 2 (FPR2), the chemical structure within MCT-2 that is responsible for FPR2 activation is still obscure. Here, we demonstrate that the N-terminal heptapeptide structure of MCT-2 with an N-formyl group is the minimum structure that specifically activates FPR2. Moreover, the receptor molecule for MCT-2 is suggested to be shifted from FPR2 to its homolog formyl peptide receptor 1 (FPR1) by the physiological cleavages of its C-terminus. Indeed, N-terminal derivatives of MCT-2 with seven amino acid residues or longer caused an increase of intracellular free Ca2+ concentration in HEK-293 cells expressing FPR2, but not in those expressing FPR1. Those MCT-2 derivatives also induced β-hexosaminidase secretion in neutrophilic/granulocytic differentiated HL-60 cells via FPR2 activation. In contrast, MCT-2(1–4), an N-terminal tetrapeptide of MCT-2, specifically activated FPR1 to promote those functions. Moreover, MCT-2 was degraded in serum to produce MCT-2(1–4) over time. These findings suggest that MCT-2 is a novel critical factor that not only initiates innate immunity via the specific activation of FPR2, but also promotes delayed responses by the activation of FPR1, which may include resolution and tissue regeneration. The present results also strongly support the necessity of considering the exact chemical structures of activating factors for the investigation of innate immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.