The structure and hydrogen bonding of water in the vicinity of carboxybetaine homopolymer (poly[1-carboxy-N,N-dimethyl-N-(2'-methacryloyloxyethyl)methanaminium inner salt] (PolyCMB), and a random copolymer of CMB and n-butyl methacrylate, Poly(CMB-r-BMA), with various molecular weights were analyzed in their aqueous solutions and thin film with contours of O-H stretching of Raman and attenuated total reflection infrared (ATR-IR) spectra, respectively. The relative intensity of the collective band (C value) corresponding to a long-range coupling of O-H stretchings of the Raman spectra for aqueous solution of Poly(CMB-r-BMA) was very close to that for pure water, which is in contrast with the smaller C value in aqueous solution of ordinary polyelectrolytes. The number of hydrogen bonds collapsed by the presence of one monomer residue (N(corr) value) of PolyCMB and Poly(CMB-r-BMA) (CMB, 45 mol %) (M(w), 1.14 x 10(4) and 1.78 x 10(4), respectively) could be calculated from the C value. The N(corr) values were much smaller than those for ordinary polyelectrolytes and close to those for nonionic water-soluble polymers such as poly(ethylene glycol) and poly(N-vinylpyrrolidone). Furthermore, a water-insoluble Poly(CMB-r-BMA) with a large BMA content (M(w) = 347 kD, CMB 27 mol %) could be cast as a thin film (thickness, ca. 10 microm) on a ZnSe crystal for the ATR-IR analyses. At an early stage of sorption of water into the Poly(CMB-r-BMA) film, the O-H stretching band of IR spectra for the water incorporated in the film was similar to that for free water, which is in contrast with the drastic change in the O-H stretching band of water incorporated in polymer films such as poly(methyl methacrylate) (PMMA) and poly(n-butyl methacrylate) (PBMA). The theoretical vibrational frequency for water molecules hydrating a betaine molecule calculated by using a density functional method supported the experimental results. The adhesion of human platelets to Poly(CMB-r-BMA) films was much less than that to PMMA and PBMA. With an increase in the content of CMB residue, the number of platelets adhered to the Poly(CMB-r-BMA) film drastically decreased and then gradually increased, probably due to the increase in the roughness of the film surface. These results suggest that the carboxybetaine monomer residues with a zwitterionic structure do not significantly disturb the hydrogen bonding between water molecules in both aqueous solution and thin film systems, resulting in the excellent blood-compatibility of the carboxybetaine polymers.
The structure and hydrogen bonding of water in the vicinity of phospholipid analogue random copolymers [poly(2-methacryloyloxyethyl phosphorylcholine-r-n-butyl methacrylate), Poly(MPC-r-BMA)] with various molecular weights were analyzed in their aqueous solutions and thin films with contours of O−H stretching of Raman and attenuated total reflection infrared (ATR-IR) spectra, respectively. The relative intensity of the collective band (C value) corresponding to a long-range coupling of O−H stretchings of the Raman spectra for the aqueous solution of Poly(MPC-r-BMA) was very close to that for pure water, which is in contrast with the smaller C value in the aqueous solution of ordinary polyelectrolytes. The number of hydrogen bonds collapsed by the presence of one monomer residue (N corr value) of Poly(MPC-r-BMA) (M w 1.3 × 104, 3.0 × 104, and 9.3 × 104) was much smaller than those for ordinary polyelectrolytes and close to those for neutral polymers such as poly(ethylene glycol) and poly(N-vinylpyrrolidone). Furthermore, water-insoluble Poly(MPC-r-BMA) with a large molecular weight (4.2 × 105) could be cast as a thin film (thickness, ca. 10 μm) on a ZnSe crystal for the ATR-IR spectroscopy. At an early stage of sorption of water into the Poly(MPC-r-BMA) film, the O−H stretching band of the IR spectra for the water incorporated in the film was similar to that for free water, which is in contrast with the drastic change in the O−H stretching band of water incorporated in polymer films such as poly(2-hydroxyethyl methacrylate), poly(methyl methacrylate), and poly(n-butyl methacrylate). These results suggest that the phospholipid analogue monomer residues with a zwitterionic structure do not significantly disturb the hydrogen bonding between water molecules in either the aqueous solution or the thin film systems.
The structure and hydrogen bonding of water in the vicinity of a thin film of a sulfobetaine copolymer (poly[(N,N-dimethyl-N-(3-sulfopropyl)-3'-methacrylamidopropanaminium inner salt)-ran-(butyl methacrylate)], poly(SPB-r-BMA)), were analyzed with band shapes of O-H stretching of attenuated total reflection infrared (ATR-IR) spectra. The copolymer could be cast as a thin film, of approximate thickness 10 microm, on a ZnSe crystal for the ATR-IR spectroscopy. At an early stage of sorption of water into the polymer film, the O-H stretching band of the IR spectra for the water incorporated in the film was similar to that for free water. This is consistent with the tendency for another zwitterionic polymeric material, poly[(2-methacryloyloxyethylphosphorylcholine)-ran-(butyl methacrylate)] (poly(MPC-r-BMA). It is, however, contradictory to the drastic change in the O-H stretching band for water incorporated into films of polymers such as poly(2-hydroxyethyl methacrylate), poly(methyl methacrylate) and poly(butyl methacrylate). These results suggest that polymers with a zwitterionic structure do not significantly disturb the hydrogen bonding between water molecules incorporated in the thin films. The investigation into the blood-compatibility of both the poly(SPB-r-BMA) and the poly(MPC-r-BMA) films indicate a definite correlation between the blood-compatibility of the polymers and the lack of effect of the polymeric materials on the structure of the incorporated water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.