A comprehensive analysis of the transcript levels of genes which encode starch-synthesis enzymes is fundamental for the assessment of the function of each enzyme and the regulatory mechanism for starch biosynthesis in source and sink organs. Using quantitative real-time RT-PCR, an examination was made of the expression profiles of 27 rice genes encoding six classes of enzymes, i.e. ADPglucose pyrophosphorylase (AGPase), starch synthase, starch branching enzyme, starch debranching enzyme, starch phosphorylase, and disproportionating enzyme in developing seeds and leaves. The modes of gene expression were tissue- and developmental stage-specific. Four patterns of expression in the seed were identified: group 1 genes, which are expressed very early in grain formation and are presumed to be involved in the construction of fundamental cell machineries, de novo synthesis of glucan primers, and initiation of starch granules; group 2 genes, which are highly expressed throughout endosperm development; group 3 genes, which have transcripts that are low at the onset but which rise steeply at the start of starch synthesis in the endosperm and are thought to play essential roles in endosperm starch synthesis; and group 4 genes, which are expressed scantly, mainly at the onset of grain development, and might be involved in synthesis of starch in the pericarp. The methodology also revealed that the defect in the cytosolic AGPase small subunit2b (AGPS2b) transcription from the AGPS2 gene in endosperm sharply enhanced the expressions of endosperm and leaf plastidial AGPS1, the endosperm cytosolic AGPase large subunit2 (AGPL2), and the leaf plastidial AGPL1.
Four amino acids were variable between the 'active' indica-type and 'inactive' japonica-type soluble starch synthase IIa (SSIIa) of rice plants; Glu-88 and Gly-604 in SSIIa of indica-cultivars IR36 and Kasalath were replaced by Asp-88 and Ser-604, respectively, in both japonica cultivars Nipponbare and Kinmaze SSIIa, whereas Val-737 and Leu-781 in indica SSIIa were replaced by Met-737 in cv. Nipponbare and Phe-781 in cv. Kinmaze SSIIa, respectively. The SSIIa gene fragments shuffling experiments revealed that Val-737 and Leu-781 are essential not only for the optimal SSIIa activity, but also for the capacity to synthesize indica-type amylopectin. Surprisingly, however, a combination of Phe-781 and Gly-604 could restore about 44% of the SSIIa activity provided that Val-737 was conserved. The introduction of the 'active' indica-type SSIIa gene enabled the japonica-type cv. Kinmaze to synthesize indica-type amylopectin. The starch in the transformed japonica rice plants exhibited gelatinization-resistant properties that are characteristic of indica-rice starch. Transformed lines expressing different levels of the IR36 SSIIa protein produced a variety of starches with amylopectin chain-length distribution patterns that correlated well with their onset temperatures of gelatinization. The present study confirmed that the SSIIa activity determines the type of amylopectin structure of rice starch to be either the typical indica-type or japonica-type, by playing a specific role in the synthesis of the long B(1) chains by elongating short A and B(1) chains, notwithstanding the presence of functional two additional SSII genes, a single SSI gene, two SSIII genes, and two SSIV genes in rice plants.
To our knowledge the present paper shows for the first time the kinetic parameters of all the three starch branching enzyme (BE) isozymes, BEI, BEIIa and BEIIb, from rice with both amylopectin and synthetic amylose as glucan substrate. The activities of these BE isozymes with a linear glucan amylose decreased with a decrease in the molar size of amylose, and no activities of BEIIa and BEIIb were found when the degree of polymerization (DP) of amylose was lower than at least 80, whereas BEI had an activity with amylose of a DP higher than approximately 50. Detailed analyses of debranched products from BE reactions revealed the distinct chain length preferences of the individual BE isozymes. BEIIb almost exclusively transferred chains of DP7 and DP6 while BEIIa formed a wide range of short chains of DP6 to around DP15 from outer chains of amylopectin and amylose. On the other hand, BEI formed a variety of short chains and intermediate chains of a DP
Rice (Oryza sativa) endosperm has two isoamylase (ISA) oligomers, ISA1 homo-oligomer and ISA1-ISA2 hetero-oligomer. To examine their contribution to starch synthesis, expression of the ISA1 or ISA2 gene was differently regulated in various transgenic plants. Although suppression of ISA2 gene expression caused the endosperm to have only the homo-oligomer, no significant effects were detected on the starch phenotypes. In contrast, ISA2 overexpression led to endosperm having only the hetero-oligomer, and starch synthesis in the endosperm was drastically impaired, both quantitatively and qualitatively, because the starch was devoid of typical starch features, such as thermal and x-ray diffraction properties, and water-soluble highly branched maltodextrins were accumulated. In the ISA2 overexpressed line, about 60% to 70% of the ISA1-ISA2 heterooligomer was bound to starch, while the ISA homo-and hetero-oligomers from the wild type were mostly present in the soluble form at the early milking stage of the endosperm. Detailed analysis of the relative amounts of homo-and heterooligomers in various lines also led us to the conclusion that the ISA1 homo-oligomer is essential, but not the ISA1-ISA2 oligomer, for starch production in rice endosperm. The relative amounts of ISA1 and ISA2 proteins were shown to determine the ratio of both oligomers and the stoichiometry of both ISAs in the hetero-oligomer. It was noted when compared with the homo-oligomer that all the hetero-oligomers from rice endosperm and leaf and potato (Solanum tuberosum) tuber were much more stable at 40°C. This study provides substantial data on the structural and functional diversity of ISA oligomers between plant tissues and species.
We have purified a protein that binds phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] using beads bearing a PtdIns(3,4,5)P3 analogue. This protein, with a molecular mass of 43 kDa, was termed PtdIns(3,4,5)P3-binding protein. The partial amino acid sequences were determined and a full-length cDNA encoding the protein was isolated from bovine brain cDNA library. The clone harbored an open reading frame of 373 amino acids which contained one zinc finger motif similar to that of ADP-ribosylation-factor GTPase-activating protein and two pleckstrin homology domains. The entire sequence was 83 % similar to centaurin a, another PtdIns(3,4,5)P3-binding protein. The protein bound PtdIns(3,4,5)P3 with a higher affinity than it did inositol 1,3,4,5-tetrakisphosphate, phosphatidylinositol 4,5-bisphosphate, phosphatidylinositol 3,4-bisphosphate, and phosphatidylinositol 3-phosphate suggesting that the binding to PtdIns(3,4,5)P3 was specific. The binding activity was weaker in the mutants with a point mutation in the conserved sequences in each pleckstrin homology domain. Introduction of both mutations abolished the activity. These results suggest that this new binding protein hinds PtdIns(3,4,5)P3 through two pleckstrin domains present in the molecule.Keywords: phosphatidylinositol 3,4,5-trisphosphate; inositolphospholipid 3-kinase; signal transduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.